搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超电阻对气球模线性不稳定性影响的理论研究

刘泰齐 陈少永 牟茂淋 唐昌建

引用本文:
Citation:

超电阻对气球模线性不稳定性影响的理论研究

刘泰齐, 陈少永, 牟茂淋, 唐昌建

Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode

Liu Tai-Qi, Chen Shao-Yong, Mou Mao-Lin, Tang Chang-Jian
PDF
HTML
导出引用
  • 在磁约束聚变等离子体中, 本文将超电阻引入气球模模型, 采用解析理论的方法研究其对气球模线性不稳定性的影响. 推导了包含超电阻、电阻和抗磁效应的非理想气球模本征方程, 分析不同条件下超电阻对气球模的作用. 结果表明, 超电阻会增强气球模的不稳定性, 其物理机制是超电阻导致的电流扩散效应使得磁力线弯曲项对气球模的稳定作用减弱; 超电阻与电阻对气球模的去稳效应存在竞争关系, 当超电阻与电阻的比值较大时, 超电阻的作用占主导, 反则反之. 超电阻的去稳效应随着环向模数增加而增强, 当环向模数大于某阈值时, 超电阻会使原本稳定的气球模变得不稳定, 且该阈值与超电阻和电阻的比值成反比. 研究结果对未来聚变堆中低碰撞率边缘等离子体中的输运改善和边缘局域模控制具有重要参考价值.
    The coupling of ballooning mode and peeling mode forms the so-called peeling-ballooning mode, which is widely used in the physical explanation of the edge localized mode (ELM). The nonlinear platform simulation based on the non-ideal peeling-ballooning mode model successfully explained the ELM experimental results. Therefore, exploring the influences of various non-ideal effects on the ballooning mode in the edge transport barrier is very important in controlling the ELM in the future fusion reactors. Among the reports on non-ideal effects, there are few reports involving the effect of hyper-resistivity caused by anomalous electron viscosity on ballooning mode. It has been found that the hyper-resistivity has a destabilizing effect on the ballooning mode, but the associated physical mechanism is still unclear. Therefore, it is necessary to systematically explore the influence of hyper-resistivity on the ballooning mode theoretically by introducing hyper-resistivity into the ballooning mode model. The linear growth rate of ideal and non-ideal ballooning mode are solved by the shooting method for the derived eigenvalue equation of non-ideal ballooning mode containing hyper-resistivity, finite resistivity and diamagnetic drift effects, and the dependence of ballooning mode on hyper-resistivity is also explored under different conditions. The results show that the hyper-resistivity may destabilize the ballooning mode, and the physical mechanism is that the current diffusion effect caused by the hyper-resistivity weakens the stabilizing effect of the magnetic field line bending on the ballooning mode. When both the resistivity and hyper-resistivity are considered, they are in a competitive relationship. When the ratio of hyper-resistivity to resistivity is relatively high, hyper-resistivity plays a dominant role, and the destabilizing effect of resistivity will be shielded by hyper-resistivity, and vice versa. The destabilization effect of hyper-resistivity on ballooning modes is enhanced with the increase of the toroidal mode number. The hyper-resistivity will destabilize the original stable modes once the toroidal mode number exceeds a certain threshold. Further studies show that the threshold is inversely proportional to the ratio of hyper-resistivity to resistivity. The research results have important reference value for the control of edge localized modes in low-collisionality edge plasma in future fusion reactors.
      通信作者: 陈少永, sychen@scu.edu.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2019YFE03090400, 2019YFE03030004)和国家自然科学基金 (批准号: 11775154, 11905152)资助的课题.
      Corresponding author: Chen Shao-Yong, sychen@scu.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Grant Nos. 2019YFE03090400, 2019YFE03030004) and the National Natural Science Foundation of China (Grant Nos. 11775154, 11905152).
    [1]

    La Haye R J 2006 Phys. Plasmas 13 055501Google Scholar

    [2]

    Connor J W, Hastie R J, Taylor J B 1978 Phys. Rev. Lett. 40 396Google Scholar

    [3]

    Glenn Bateman, Nelson D B 1978 Phys. Rev. Lett. 41 1804Google Scholar

    [4]

    Strauss H R 1981 Phys. Fluids 24 2004Google Scholar

    [5]

    Dark J F, Antonsen Jr T M 1985 Phys. Fluids 28 544Google Scholar

    [6]

    Lortz D, Nuhrenberg J 1978 Phys. Lett. A 68 49Google Scholar

    [7]

    Coppi B, Ferreira A, Ramos J 1980 Phys. Rev. Lett. 44 990Google Scholar

    [8]

    Strauss H R, Park W, Monticello D A, White R B 1980 Nucl. Fusion 20 638

    [9]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [10]

    Strauss H R 1986 Phys. Fluids 29 3668Google Scholar

    [11]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [12]

    Wu N, Chen S Y, Mou M L, Tang C J 2018 Phys. Plasmas 25 092305Google Scholar

    [13]

    Connor J W, Hastie R J, Wilson H R 1998 Phys. Plasmas 5 2687Google Scholar

    [14]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [15]

    Rhee T, Park G Y, Jhang H, Kim S S, Singh R 2017 Phys. Plasmas 24 072504Google Scholar

    [16]

    Rhee T, Kim S S, Jhang H, Park G Y, Singh R 2015 Nucl. Fusion 55 032004Google Scholar

    [17]

    Jhang H, Kaang H H, Kim S S, Rhee T, Singh R, Hahm T S 2017 Nucl. Fusion 57 022006Google Scholar

    [18]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [19]

    Mou M L, Jhang H, Rhee T, Chen S Y, Tang C J 2018 Phys. Plasmas 25 082518Google Scholar

    [20]

    Xia T Y, Xu X Q, Dudson B D, Li J 2012 Contrib. Plasma Phys. 52 353Google Scholar

    [21]

    Tang W M, Dewar R L, Manickam J 1982 Nucl. Fusion 22 1079Google Scholar

  • 图 1  考虑超电阻的非理想气球模本征方程函数解($R= $$ 3.52\;{\rm{m}}$, $r=1.24\;{\rm{m}}$, $ q=2.35 $, $s=2.59 $, $ \alpha =0.46 $, $n= $$ 35$, $\eta ={10}^{-7}$, $ {\eta }_{{\rm{H}}}={9\times 10}^{-15} $)

    Fig. 1.  Eigen-functions of the ballooning model with hyper-resistivity ($R=3.52\;{\rm{m}}$, $r=1.24\;{\rm{m}}$, $ q=2.35 $, $s=2.59 $, $ \alpha =0.46 $, $ n=35 $, $\eta ={10}^{-7}$, $ {\eta }_{{\rm{H}}}={9\times 10}^{-15} $).

    图 2  超电阻对理想气球模线性增长率的影响, 其中横坐标$ n $表示环向模数, 纵坐标为归一化气球模线性增长率

    Fig. 2.  Effect of hyper-resistivity on the linear growth rate of ideal ballooning modes, where the x-coordinate represents the toroidal mode number, and the y-coordinate is the linear growth rate of ballooning modes.

    图 3  不同电阻和超电阻条件下气球模线性增长率随环向模数的变化, 其中超电阻和电阻的比值$ {\alpha }_{{\rm{H}}}={10}^{-7} $保持不变

    Fig. 3.  Linear growth rate of ballooning modes varies with toroidal mode number under different resistivity and hyper-resistivity, the ratio of hyper-resistivity to resistivity remain unchanged, where $ {\alpha }_{{\rm{H}}}={10}^{-7} $.

    图 4  保持超电阻大小不变($ {\eta }_{{\rm{H}}}={10}^{-16} $), 不同电阻条件下气球模线性增长率随环向模数的变化

    Fig. 4.  The linear growth rate of the ballooning mode varies with the toroidal mode number under different resistivity conditions, keeping the values of the hyper-resistivity unchanged, where $ {\eta }_{{\rm{H}}}={10}^{-16} $.

    图 5  不同$ {\alpha }_{{\rm{H}}} $条件下, 气球模线性增长率随环向模数的变化情况, 其中电阻$ \eta ={10}^{-8} $保持不变

    Fig. 5.  The linear growth rate of the ballooning mode varies with the toroidal mode number under different ratio of the hyper-resistivity to the resistivity, where the value of resistivity is a constant.

    图 6  不同电阻条件下, 超电阻对气球模线性增长率起作用的环向模数阈值与超电阻和电阻比值之间的关系, 横坐标为超电阻与电阻的比值$ {\alpha }_{{\rm{H}}} $, 纵坐标为环向模数阈值$ {n}_{{\rm{t}}{\rm{h}}} $

    Fig. 6.  The threshold value of toroidal mode number varies with the ratio of hyper-resistivity to resistivity when the hyper-resistivity plays a role in the linear growth rate of the ballooning mode by changing the resistivity values. The x-coordinate is the ratio of the hyper-resistivity to the resistivity, and the y-coordinate is the threshold value of toroidal mode number.

    图 7  考虑抗磁效应条件下, 超电阻对气球模线性增长率的影响

    Fig. 7.  Effect of hyper-resistivity on the linear growth rate of ideal ballooning modes with diamagnetic effect.

    图 8  同时考虑抗磁效应、电阻和超电阻条件下, 气球模线性增长率随环向模数的变化, 其中$ {\alpha }_{{\rm{H}}}={10}^{-7} $保持不变

    Fig. 8.  With diamagnetic effect, the linear growth rate of ballooning modes varies with toroidal mode number under different resistivity and hyper-resistivity, keeping the ratio of hyper-resistivity to resistivity unchanged, where ${\alpha }_{{\rm{H}}}= $$ {10}^{-7}$.

    图 9  同时考虑抗磁、电阻和超电阻效应条件下, 气球模线性增长率随环向模数的变化, 其中超电阻大小(${\eta }_{{\rm{H}}}= $$ {10}^{-16}$)保持不变

    Fig. 9.  With diamagnetic effect, the linear growth rate of the ballooning mode varies with the toroidal mode number under different resistivity conditions, keeping the values of hyper-resistivity unchanged, where $ {\eta }_{{\rm{H}}}={10}^{-16} $.

    图 10  考虑抗磁效应时, 环向模数阈值随超电阻与电阻比值的变化

    Fig. 10.  With diamagnetic effect, the threshold value of toroidal mode number varies with the ratio of hyper-resistivity to resistivity.

    图 11  气球模线性增长率随磁剪切的变化关系(取参数$\alpha =0.46,\; n=50, \;\eta ={10}^{-8},\; {\eta }_{{\rm{H}}}={1\times 10}^{-15}$)

    Fig. 11.  Linear growth rate of ballooning modes varies with the growth of magnetic shear, with $\alpha =0.46,\; n=50, $$ \; \eta ={10}^{-8}, \;{\eta }_{{\rm{H}}}={1\times 10}^{-15}$.

    图 12  不同磁剪切条件下, 环向模数阈值随超电阻与电阻比值的变化关系

    Fig. 12.  With different magnetic shear, the threshold value of toroidal mode number varies with the ratio of hyper-resistivity to resistivity.

  • [1]

    La Haye R J 2006 Phys. Plasmas 13 055501Google Scholar

    [2]

    Connor J W, Hastie R J, Taylor J B 1978 Phys. Rev. Lett. 40 396Google Scholar

    [3]

    Glenn Bateman, Nelson D B 1978 Phys. Rev. Lett. 41 1804Google Scholar

    [4]

    Strauss H R 1981 Phys. Fluids 24 2004Google Scholar

    [5]

    Dark J F, Antonsen Jr T M 1985 Phys. Fluids 28 544Google Scholar

    [6]

    Lortz D, Nuhrenberg J 1978 Phys. Lett. A 68 49Google Scholar

    [7]

    Coppi B, Ferreira A, Ramos J 1980 Phys. Rev. Lett. 44 990Google Scholar

    [8]

    Strauss H R, Park W, Monticello D A, White R B 1980 Nucl. Fusion 20 638

    [9]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [10]

    Strauss H R 1986 Phys. Fluids 29 3668Google Scholar

    [11]

    Kaw P K, Valeo E J, Rutherford P H 1979 Phys. Rev. Lett. 43 1398Google Scholar

    [12]

    Wu N, Chen S Y, Mou M L, Tang C J 2018 Phys. Plasmas 25 092305Google Scholar

    [13]

    Connor J W, Hastie R J, Wilson H R 1998 Phys. Plasmas 5 2687Google Scholar

    [14]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [15]

    Rhee T, Park G Y, Jhang H, Kim S S, Singh R 2017 Phys. Plasmas 24 072504Google Scholar

    [16]

    Rhee T, Kim S S, Jhang H, Park G Y, Singh R 2015 Nucl. Fusion 55 032004Google Scholar

    [17]

    Jhang H, Kaang H H, Kim S S, Rhee T, Singh R, Hahm T S 2017 Nucl. Fusion 57 022006Google Scholar

    [18]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [19]

    Mou M L, Jhang H, Rhee T, Chen S Y, Tang C J 2018 Phys. Plasmas 25 082518Google Scholar

    [20]

    Xia T Y, Xu X Q, Dudson B D, Li J 2012 Contrib. Plasma Phys. 52 353Google Scholar

    [21]

    Tang W M, Dewar R L, Manickam J 1982 Nucl. Fusion 22 1079Google Scholar

  • [1] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动. 物理学报, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [4] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [5] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [6] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [7] 章扬忠, 谢涛. 轴对称环状静电模的漂移波湍流参量激发理论研究. 物理学报, 2014, 63(3): 035202. doi: 10.7498/aps.63.035202
    [8] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [9] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [10] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [11] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [12] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [13] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [14] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [15] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [16] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [17] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究. 物理学报, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [18] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [19] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析. 物理学报, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  2487
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-05-18
  • 上网日期:  2023-05-25
  • 刊出日期:  2023-07-20

/

返回文章
返回