搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动

刘冠男 李新霞 刘洪波 孙爱萍

引用本文:
Citation:

HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动

刘冠男, 李新霞, 刘洪波, 孙爱萍

Synergistic current drive of helicon wave and lower hybrid wave in HL-2M

Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping
PDF
HTML
导出引用
  • 螺旋波是一种快磁声波, 在托卡马克等离子体中通过电子朗道阻尼和渡越期磁泵效应能够高效地离轴驱动等离子体电流. 依托HL-2M装置, 根据快波等离子体色散关系, 分析获得了螺旋波强阻尼条件下对应的波参数范围; 然后, 通过联合GENRAY/CQL3D计算程序, 针对HL-2M装置稳态运行模式下的螺旋波和低杂波协同电流驱动开展了模拟研究. 研究结果表明: 高比压等离子体参数下的螺旋波和低杂波都可呈现波射线能量强吸收的现象; 双波协同使得波驱动的等离子体电流分布在较大的径向位置范围($\rho = $0.2—0.9)内; 同时, 螺旋波在平行磁场方向加速电子, 导致了更多的电子进入低杂波共振区, 从而有效地增大了两支波的总驱动电流. 此外, 在强阻尼条件下, 系统地研究了螺旋波平行折射率对双波协同电流驱动的影响, 结果表明双波总是呈现正协同效应, 协同因子高达1.18.
    Non-inductive current drive plays a crucial role in tokamak, especially for its steady state operations. Recently, the helicon wave (HW) has been regarded as a promising tool for driving off-axis plasma current in reactor-grade machine. The lower-hybrid wave (LHW) is the most effective radio-frequency current drive method, however, it has the drawback, which is limited by the conditions of wave accessibility in the high parameter tokamak, making the wave power usually damped at the plasma edge. HW can spiral towards the plasma centre directly under a high electron density. To obtain a long pulse steady state operation of reactor tokamak, the complementarity of HW and LHW in the aspect of driven current distribution in the high parameter tokamak is considered. The synergy current drive of the HW and the LHW is studied numerically in the steady-state scenario of HL-2M. According to the fast wave dispersion relation of plasma, the HW parameters, including its wave frequency and launched parallel refractive index, are obtained firstly. Results of GENRAY code simulation show that a single pass wave power absorption of the HW can be obtained generally through the electron Landau damping and transit time magnetic pumping effects. On the other hand, the LHW parameters are adopted from the equipped system on the machine. Results of single pass wave absorption are also obtained in the case of LHW. And then, the synergy effects of HW and LHW are studied numerically based on the GENRAY/CQL3D models. The cooperation of these two waves results in a broad plasma current distribution along the radial direction ($\rho = $0.2-0.9) in the machine. Taking the electron distribution functions of these waves into account, it is clear that the electrons are accelerated by the HW in the parallel magnetic field direction, resulting in more electrons entering the region of LHW resonance area. As the consequence, a net plasma current appears. Furthermore, a fine-grained parametric scan is performed by changing the launched parallel refractive index of HW, and the results indicate that positive synergy effects can be generally observed once the related wave current drive profiles are overlapped. Finally, the synergy factor is shown to be proportional to this overlap and reaches its maximum value of 1.18 in HL-2M.
      通信作者: 李新霞, li_xx@usc.edu.cn ; 孙爱萍, apsun@swip.ac.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2019YFE03040004)和国家自然科学基金(批准号: 11775108)资助的课题.
      Corresponding author: LI Xin-Xia, li_xx@usc.edu.cn ; Sun Ai-Ping, apsun@swip.ac.cn
    • Funds: Project supported by the National Magnetic Confinement Nuclear Fusion Energy Development Research of China (Grant No. 2019YFE03040004) and the National Natural Science Foundation of China (Grant No. 11775108).
    [1]

    Chiu S C, Chan V S, Harvey R W, Porkolab M 1989 Nucl. Fusion 29 2175Google Scholar

    [2]

    Peysson Y, Decker J, Nilsson E, Artaud J F, Ekedahl A, Goniche M, Hillairet J, Ding B, Li M, Bonoli P T, Shiraiwa S, Madi M 2016 Plasma Phys. Controlled Fusion 58 044008Google Scholar

    [3]

    Wang Z T, Long Y X, Dong J Q, He Z X 2013 Chin. Phys. B 22 095201Google Scholar

    [4]

    Phillips C K, Bell R E, Berry L A, Bonoli P T, Harvey R W, Hosea J C, Jaeger E F, LeBlanc B P, Ryan P M, Taylor G, Valeo E J, Wilgen J B, Wilson J R, Wright J C, Yuh H, NSTX Team 2009 Nucl. Fusion 49 075015Google Scholar

    [5]

    Huang C B, Gao X, Liu Z X, Han X, Zhang T, Wang Y M, Zang S B, Kong D F, EAST Team 2016 Plasma Phys. Controlled Fusion 58 075005Google Scholar

    [6]

    Duan X R, Ding X T, Dong J Q, Yan L W, Liu Y, Huang Y, Song X M, Zou X L, Xu M, Yang Q W, Liu D Q, Rao J, Xuan W M, Chen L Y, Mao W C, Wang Q M, Cao J Y, Lei G J, Zhang J H, Li X D, Chen W, Zhao K J, Xiao W W 2013 Nucl. Fusion 53 104009Google Scholar

    [7]

    Li X X, Xiang N, Gan C Y 2015 Chin. Phys. Lett. 32 035202Google Scholar

    [8]

    Prater R, Moeller C P, Pinsker R I, Porkolab M, Meneghini O, Vdovin V L 2014 Nucl. Fusion 54 083024Google Scholar

    [9]

    Vdovin V L 2013 Plasma Phys. Rep. 39 95Google Scholar

    [10]

    Van Compernolle B, Brookman M, Pinsker R, Moeller C, Squire J, Garofalo A M, Nagy A, Torrezan A, Ponce D, Pawley C, Chowdury S, Crocker N, Degrandchamp G, Hinson E, Lohr J, Marinoni A, Martin E, Petty C, Porkolab M, Rost C, Schmitz O, Thome K, Wang Q H, Watkins J, Zeller K 2021 63rd Annual Meeting of the APS Division of Plasma Physics Pittsburgh, November 8–12, 2021 UO07

    [11]

    Liu H B, Liu G N, Sun A P, Xiao Z Y, Li X X 2022 J. Korean Phys. Soc. 81 397Google Scholar

    [12]

    Fidone I, Giruzzi G, Granata G, Meyer R L 1984 Phys. Fluids. 27 2468Google Scholar

    [13]

    Kawashima H, Yamamoto T, Hoshino K, Uesugi Y, Mori M, Suzuki N 1991 Nucl. Fusion 31 495Google Scholar

    [14]

    Maekawa T, Maehara T, Minami T, Kishigami Y, Kishino T, Makino K, Hanada K, Nakamura M, Terumichi Y, Tanaka S 1993 Phys. Rev. Lett. 70 2561Google Scholar

    [15]

    Maehara T, Yoshimura S, Minami T, Hanada K, Nakamura M, Maekawa T, Terumichi Y 1998 Nucl. Fusion 38 39Google Scholar

    [16]

    Harvey R W, Chiu S C, McCoy M G, Kerbel G D, Smith G R, Mau T K 1991 Proc. of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks Arles, France, September 23–25, 1991 p135

    [17]

    Yang Y L, Xiang N, Hu Y M 2017 Phys. Plasmas 24 032502Google Scholar

    [18]

    Yang Y L, Xiang N, Hu Y M 2017 Phys. Plasmas 24 082503Google Scholar

    [19]

    Yin L, Zheng P W, Gong X Y, Yang C, Yin X H, Song C Y, Huang Q H, Chen Y, Zhong Y J 2022 Nucl. Fusion 62 066023Google Scholar

    [20]

    Pinsker R I, Porkolab M, Petty C C, Prater R, Moeller C P 2015 AIP Conference Proceedings 1689 080012Google Scholar

    [21]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377Google Scholar

    [22]

    刘祖光 2020 硕士学位论文 (衡阳: 南华大学)

    Liu Z G 2020 M. S. Thesis (Hengyang: University of South China

    [23]

    The GENRAY Ray Tracing Code, Smirnov A P, Harvey R W https://compxco.com/Genray_manual.pdf [2003-03-17

    [24]

    Artaud J F, Imbeaux F, Garcia J, Giruzzi G, Aniel T, Basiuk V, Bécoulet A, Bourdelle C, Buravand Y, Decker J, Dumont R, Eriksson L G, Garbet X, Guirlet R, Hoang G T, Huynh P, Joffrin E, Litaudon X, Maget P, Moreau D, Nouailletas R, Pégourié B, Peysson Y, Schneider M, Urban J 2018 Nucl. Fusion 58 105001Google Scholar

    [25]

    李新霞, 李国壮, 刘洪波 2020 物理学报 69 145201Google Scholar

    Li X X, Li G Z, Liu H B 2020 Acta Phys. Sin. 69 145201Google Scholar

    [26]

    杨友磊, 胡业民, 项农 2017 物理学报 66 245202Google Scholar

    Yang Y L, Hu Y M, Xiang N 2017 Acta Phys. Sin. 66 245202Google Scholar

  • 图 1  HL-2M装置稳态运行模式下的等离子体平衡参数 (a)电子温度和密度分布; (b)有效电荷和安全因子分布

    Fig. 1.  Radial profiles of (a) electron temperature and density for the HL-2M steady-state scenario; radial profiles of (b) effective charge and safety factor for the HL-2M steady-state scenario.

    图 2  在HL-2M装置放电条件下通过HW强阻尼条件求得的$ 2\overline {k_{ \bot {\text{I}}}^{(\rm e)}} a $值的等高线图 (a) ${\beta _{\text{e}}}\sim$2.0%时, $ 2\overline {k_{ \bot {\text{I}}}^{(\rm e)}} a $关于${\xi _{\text{e}}}$和$f$的等高线图; (b) $ {f_{{\text{HW}}}} = $0.6 GHz时, $ 2\overline {k_{ \bot {\text{I}}}^{(\rm e)}} a $关于${\xi _{\text{e}}}$和${\beta _{\text{e}}}$的等高线图

    Fig. 2.  Contours of $ 2\overline {k_{ \bot {\text{I}}}^{(\rm e)}} a $ as a function of (a) ${\xi _{\text{e}}}$ and $f$ with ${\beta _{\text{e}}}\sim$2.0% for the strong damping condition of the HW of HL-2M; contours of $ 2\overline {k_{ \bot {\text{I}}}^{(\rm e)}} a $ as a function of (b) ${\xi _{\text{e}}}$ and ${\beta _{\text{e}}}$ with ${f_{{\text{HW}}}} = $0.6 GHz for the strong damping condition of the HW of HL-2M.

    图 3  HL-2M装置LHW/HW波射线传播轨迹, 其中, ${f_{{\text{LH}}}} = $3.7 GHz, ${n_{{{/ /\rm LH}}}}$分别取2.2和2.6; ${f_{{\text{HW}}}} = $0.6 GHz, ${n_{{{/ / \rm HW}}}} = $3.7

    Fig. 3.  Ray trajectories of the HW with ${f_{{\text{HW}}}} = $0.6 GHz and ${n_{{{/ / \rm HW}}}} = $3.7 in HL-2M, as well as the LHW with ${f_{{\text{LH}}}} = $3.7 GHz and ${n_{{{/ /\rm LH}}}}$ of 2.2 and 2.6 respectively.

    图 4  HW, LHW和双波协同(HW+LH)驱动下的电流密度剖面

    Fig. 4.  Driven current density profiles for the HW, the LHW, and the HW+ LHW.

    图 5  (a)麦克斯韦(${D_{{\text{Maxwell}}}}$), HW(${D_{{\text{HW}}}}$), LHW(${D_{{\text{LH}}}}$)单独作用下和双波协同作用(${D_{{\text{HW}} + {\text{LH}}}}$)下的电子平行分布; (b) 图5(a)中黑色矩形框的放大区域

    Fig. 5.  (a) Parallel electron distributions of the Maxwell, the HW, the LHW, and HW+LHW; (b) the enlarged area of the black rectangular box in Fig. 5(a).

    图 6  波电场加速下的电子通量、波电场及碰撞作用下电子总通量的对数及射频波准线性扩散和碰撞作用下的电子分布 (a)—(c)分别为HW, LHW以及双波协同下的电子通量; (d)—(f) 分别为HW, LHW以及双波协同下的电子总通量的对数; (g)—(i)分别为HW, LHW以及双波协同下的电子分布

    Fig. 6.  (a)–(c) Electron flux of the HW, the LHW, and the HW+LHW respectively; (d)–(f) the logarithms of the total electron fluxes for the case of Fig. 6(a)-(c); (g)–(i) contours of the electron distribution function for the case of Fig. 6(a)-(c).

    表 1  不同HW平行折射率下的协同效果

    Table 1.  Synergistic effect in different HW parallel refractive indexes.

    ${n_{{{/ / \rm HW}}}}$${I_{{\text{HW}} + {\text{LH}}}}/{\text{kA}}$${I_{{\text{HW}}}}/{\text{kA}}$${I_{{\text{LH}}}}/{\text{kA}}$${F_{{\text{syn}}}}$
    3.31228.0440.6669.01.18
    3.51211.1433.3669.01.16
    3.71180.6416.0669.01.14
    3.91151.6396.5669.01.13
    4.11120.5377.0669.01.11
    下载: 导出CSV
  • [1]

    Chiu S C, Chan V S, Harvey R W, Porkolab M 1989 Nucl. Fusion 29 2175Google Scholar

    [2]

    Peysson Y, Decker J, Nilsson E, Artaud J F, Ekedahl A, Goniche M, Hillairet J, Ding B, Li M, Bonoli P T, Shiraiwa S, Madi M 2016 Plasma Phys. Controlled Fusion 58 044008Google Scholar

    [3]

    Wang Z T, Long Y X, Dong J Q, He Z X 2013 Chin. Phys. B 22 095201Google Scholar

    [4]

    Phillips C K, Bell R E, Berry L A, Bonoli P T, Harvey R W, Hosea J C, Jaeger E F, LeBlanc B P, Ryan P M, Taylor G, Valeo E J, Wilgen J B, Wilson J R, Wright J C, Yuh H, NSTX Team 2009 Nucl. Fusion 49 075015Google Scholar

    [5]

    Huang C B, Gao X, Liu Z X, Han X, Zhang T, Wang Y M, Zang S B, Kong D F, EAST Team 2016 Plasma Phys. Controlled Fusion 58 075005Google Scholar

    [6]

    Duan X R, Ding X T, Dong J Q, Yan L W, Liu Y, Huang Y, Song X M, Zou X L, Xu M, Yang Q W, Liu D Q, Rao J, Xuan W M, Chen L Y, Mao W C, Wang Q M, Cao J Y, Lei G J, Zhang J H, Li X D, Chen W, Zhao K J, Xiao W W 2013 Nucl. Fusion 53 104009Google Scholar

    [7]

    Li X X, Xiang N, Gan C Y 2015 Chin. Phys. Lett. 32 035202Google Scholar

    [8]

    Prater R, Moeller C P, Pinsker R I, Porkolab M, Meneghini O, Vdovin V L 2014 Nucl. Fusion 54 083024Google Scholar

    [9]

    Vdovin V L 2013 Plasma Phys. Rep. 39 95Google Scholar

    [10]

    Van Compernolle B, Brookman M, Pinsker R, Moeller C, Squire J, Garofalo A M, Nagy A, Torrezan A, Ponce D, Pawley C, Chowdury S, Crocker N, Degrandchamp G, Hinson E, Lohr J, Marinoni A, Martin E, Petty C, Porkolab M, Rost C, Schmitz O, Thome K, Wang Q H, Watkins J, Zeller K 2021 63rd Annual Meeting of the APS Division of Plasma Physics Pittsburgh, November 8–12, 2021 UO07

    [11]

    Liu H B, Liu G N, Sun A P, Xiao Z Y, Li X X 2022 J. Korean Phys. Soc. 81 397Google Scholar

    [12]

    Fidone I, Giruzzi G, Granata G, Meyer R L 1984 Phys. Fluids. 27 2468Google Scholar

    [13]

    Kawashima H, Yamamoto T, Hoshino K, Uesugi Y, Mori M, Suzuki N 1991 Nucl. Fusion 31 495Google Scholar

    [14]

    Maekawa T, Maehara T, Minami T, Kishigami Y, Kishino T, Makino K, Hanada K, Nakamura M, Terumichi Y, Tanaka S 1993 Phys. Rev. Lett. 70 2561Google Scholar

    [15]

    Maehara T, Yoshimura S, Minami T, Hanada K, Nakamura M, Maekawa T, Terumichi Y 1998 Nucl. Fusion 38 39Google Scholar

    [16]

    Harvey R W, Chiu S C, McCoy M G, Kerbel G D, Smith G R, Mau T K 1991 Proc. of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks Arles, France, September 23–25, 1991 p135

    [17]

    Yang Y L, Xiang N, Hu Y M 2017 Phys. Plasmas 24 032502Google Scholar

    [18]

    Yang Y L, Xiang N, Hu Y M 2017 Phys. Plasmas 24 082503Google Scholar

    [19]

    Yin L, Zheng P W, Gong X Y, Yang C, Yin X H, Song C Y, Huang Q H, Chen Y, Zhong Y J 2022 Nucl. Fusion 62 066023Google Scholar

    [20]

    Pinsker R I, Porkolab M, Petty C C, Prater R, Moeller C P 2015 AIP Conference Proceedings 1689 080012Google Scholar

    [21]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377Google Scholar

    [22]

    刘祖光 2020 硕士学位论文 (衡阳: 南华大学)

    Liu Z G 2020 M. S. Thesis (Hengyang: University of South China

    [23]

    The GENRAY Ray Tracing Code, Smirnov A P, Harvey R W https://compxco.com/Genray_manual.pdf [2003-03-17

    [24]

    Artaud J F, Imbeaux F, Garcia J, Giruzzi G, Aniel T, Basiuk V, Bécoulet A, Bourdelle C, Buravand Y, Decker J, Dumont R, Eriksson L G, Garbet X, Guirlet R, Hoang G T, Huynh P, Joffrin E, Litaudon X, Maget P, Moreau D, Nouailletas R, Pégourié B, Peysson Y, Schneider M, Urban J 2018 Nucl. Fusion 58 105001Google Scholar

    [25]

    李新霞, 李国壮, 刘洪波 2020 物理学报 69 145201Google Scholar

    Li X X, Li G Z, Liu H B 2020 Acta Phys. Sin. 69 145201Google Scholar

    [26]

    杨友磊, 胡业民, 项农 2017 物理学报 66 245202Google Scholar

    Yang Y L, Hu Y M, Xiang N 2017 Acta Phys. Sin. 66 245202Google Scholar

  • [1] 胡莹欣, 赵开君, 李继全, 严龙文, 许健强, 黄治辉, 余德良, 谢耀禹, 丁肖冠, 温思宇. HL-2A托卡马克电子回旋共振加热调制对湍流驱动和传播的影响. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241263
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] 樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建. 低杂波注入对剥离气球模的作用. 物理学报, 2024, 73(9): 095204. doi: 10.7498/aps.73.20240130
    [4] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [5] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [6] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [7] 王小艳, 汪芃, 李倩昀, 唐国宁. 用晚钠电流终止心脏中的螺旋波和时空混沌. 物理学报, 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [8] 杨友磊, 胡业民, 项农. 捕获电子对低杂波与电子回旋波的协同效应的影响. 物理学报, 2017, 66(24): 245202. doi: 10.7498/aps.66.245202
    [9] 潘飞, 黎维新, 王小艳, 唐国宁. 用低通滤波方法终止心脏组织中的螺旋波和时空混沌. 物理学报, 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [10] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [11] 王春妮, 马军. 分布式电流刺激抑制心肌组织中螺旋波. 物理学报, 2013, 62(8): 084501. doi: 10.7498/aps.62.084501
    [12] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [13] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [14] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [15] 卢洪伟, 胡立群, 周瑞杰, 许平, 钟国强, 林士耀, 王少锋. HT-7 Tokamak离子回旋波和低杂波等离子体逃逸电子行为研究. 物理学报, 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [16] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [17] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] 李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐旵东. 利用低杂波改善约束的实验研究. 物理学报, 2000, 49(12): 2414-2419. doi: 10.7498/aps.49.2414
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析. 物理学报, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  2540
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-01
  • 修回日期:  2023-08-11
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-12-20

/

返回文章
返回