搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用晚钠电流终止心脏中的螺旋波和时空混沌

王小艳 汪芃 李倩昀 唐国宁

引用本文:
Citation:

用晚钠电流终止心脏中的螺旋波和时空混沌

王小艳, 汪芃, 李倩昀, 唐国宁

Terminating spiral wave and spatiotemporal chaos in cardiac tissues by using late sodium current

Wang Xiao-Yan, Wang Peng, Li Qian-Yun, Tang Guo-Ning
PDF
导出引用
  • 采用人类心脏模型研究了用晚钠电流控制二维心脏组织中的螺旋波和时空混沌,我们提出这样的控制策略来产生晚钠电流:让慢失活门变量j始终等于0.7,同时实时调节钠电流的快失活门变量h的阈值电压VI ,即先让阈值电压VI经过T1时间从71.55 mV均匀减少到50.55 mV,然后经过T2时间再从50.55 mV均匀增加到71.55 mV,当阈值电压VI回到71.55 mV,钠电流的快、慢失活门变量恢复正常变化.数值模拟结果表明:只要适当选择控制时间,不论心肌细胞是否存在自发的晚钠电流,控制产生的晚钠电流都可以有效抑制螺旋波和时空混沌,而且需要的晚钠电流都很小,且控制时间都很短,因为螺旋波和时空混沌消失主要是通过传导障碍消失,少数情况下时空混沌是通过转变为靶波消失.我们希望这种控制方法能为室颤控制提供新的思路.
    Most Na+ channels open transiently upon depolarization of cardiac cell membrane and then are quickly inactivated. However, some Na+ channels remain active, which generate the late sodium current during the action potential plateau. So far, late sodium current has been regarded as a relevant contributor to arrhythmias and its inhibition can suppress re-entrant and multifocal ventricular fibrillation so that its inhibition may become a novel therapeutic strategy to treat cardiac arrhythmias in the future. Therefore, how to inhibit late sodium current has received special attention. Since both the late sodium current and defibrillation shocks can lead to the increase of action potential duration, the late sodium current can be used to terminate ventricular fibrillation. However, the suppression of spiral wave and spatiotemporal chaos in cardiac tissues via late sodium current has been neglected. In this paper, we use the model of human heart to study the suppression of spiral wave and spatiotemporal chaos in two-dimensional cardiac tissue by generating late sodium current. We suggest that such a control strategy to induce late sodium current. The slow inactivation gate of sodium channel is clamped to 0.7 while the threshold voltage of corresponding fast inactivation gate is real-timely modulated. We first reduce the threshold voltage from 71.55 mV to 50.55 mV within the time interval T1, and then increase it from 50.55 mV to 71.55 mV within the time interval T2. When the threshold voltage returns to 71.55 mV, the changes of the relevant inactivation gates of sodium channel go back to normal dynamic state. Numerical simulation results show that when the control parameters are properly chosen, the control-induced late sodium current can effectively suppress spiral wave and spatiotemporal chaos even if there are some cardiac cells with spontaneous late sodium current. The advantage of the control scheme is that the control-induced late sodium current is small. The control duration is short because the spiral wave and spatiotemporal chaos disappear mainly due to the conduction obstacle. In a few cases, the spatiotemporal chaos disappears through the transition from spiral wave to target wave. We hope that these results may provide a new strategy to treat heart disease.
      通信作者: 唐国宁, tangguoning@sohu.com
    • 基金项目: 国家自然科学基金(批准号:11565005,11365003,11647309)资助的课题.
      Corresponding author: Tang Guo-Ning, tangguoning@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11565005,11365003,11647309).
    [1]

    Gray R A, Jalife J 1996 Int. J. Bifurcat. Chaos 6 415

    [2]

    Navarrete E G, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge P W, Patlolla B, Lee A S, Wu H, Beygui R E, Wu S M, Robbins R C, Bers D M, Wu J C 2013 Circulation 128 S3

    [3]

    Braunschweig F, Boriani G, Bauer A, Hatala R, Herrmann-Lingen C, Kautzner J, Pedersen S S, Pehrson S, Ricci R, Schalij M J 2010 Europace 12 1673

    [4]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [5]

    Wang C N, Ma J 2013 Acta Phys. Sin. 62 084501 (in Chinese)[王春妮, 马军 2013 物理学报 62 084501]

    [6]

    Tandri H, Weinberg S H, Chang K C, Zhu R, Trayanova N A, Tung L, Berger R D 2011 Sci. Tramsl. Med. 3 102ra96

    [7]

    Lou Q, Chen J X, Zhao Y H, Shen F R, Fu Y, Wang L L, Liu Y 2012 Phys. Rev. E 85 026213

    [8]

    Smagina Y, Sheintuch M 2014 arXiv preprint arXiv:arXiv:1410.0506

    [9]

    Ji L, Zhou Y, Li Q, Qiao C, Ouyang Q 2013 Phys. Rev. E 88 042919

    [10]

    Li W, Janardhan A H, Fedorov V V, Sha Q, Schuessler R B, Efimov I R 2011 Circ. Arrhythm. Electrophysiol. 4 917

    [11]

    Pan F, Li W X, Wang X Y, Tang G N 2015 Acta Phys. Sin. 64 218202 (in Chinese)[潘飞, 黎维新, 王小艳, 唐国宁 2015 物理学报 64 218202]

    [12]

    Burton R A B, Klimas A, Ambrosi C M, Tomek J, Corbett A, Entcheva E, Bub G 2015 Nat. Photon. 9 813

    [13]

    Bingen B O, Engels M C, Schalij M J, Jangsangthong W, Neshati Z, Feola I, Ypey D L, Askar S F, Panfilov A V, Pijnappels D A, de Vries A A F 2014 Circ. Res. 102 176

    [14]

    Nussinovitch U, Shinnawi R, Gepstein L 2014 Circ. Res.102 176

    [15]

    Ambrosi C M, Entcheva E 2014 Methods Mol. Boil. 1181 215

    [16]

    Shcherbakov D, Motovilov K, Erofeev I, Astafiev A 2012 Nat. Methods 9 396

    [17]

    Mourot A, Fehrentz T, Le Feuvre Y, Smith C M, Herold C, Dalkara D, Nagy F, Trauner D, Kramer R H 2012 Nat. Methods 9 396

    [18]

    Pourrier M, Williams S, Mcafee D, Belardinelli L, Fedida D 2014 J. Physiol. 592 411

    [19]

    Belardinelli L, Liu G, Smith-Maxwell C, Wang W Q, El-Bizri N, Hirakawa R, Karpinski S, Li C H, Li X J, Crumb W, Wu L, Koltun D, Zablocki J, Yao L, Dhalla A K, Rajamani S, Shryock J C 2013 J. Pharmacol. Exp. Ther. 344 23

    [20]

    Morita N, Lee J H, Xie Y, Sovari A, Qu Z, Weiss J N, Karagueuzian H S 2011 J. Am. Coll. Cardiol. 57 366

    [21]

    Ten Tusscher K H W J, Noble D, Noble P J, Panfilov A V 2008 Am. J. Physiol. Heart Circ. Physiol. 294 H2031

    [22]

    Song Y, Shryock J C, Belardinelli L 2008 Am. J. Physiol.Heart Circ. Physiol. 294 H2031

  • [1]

    Gray R A, Jalife J 1996 Int. J. Bifurcat. Chaos 6 415

    [2]

    Navarrete E G, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge P W, Patlolla B, Lee A S, Wu H, Beygui R E, Wu S M, Robbins R C, Bers D M, Wu J C 2013 Circulation 128 S3

    [3]

    Braunschweig F, Boriani G, Bauer A, Hatala R, Herrmann-Lingen C, Kautzner J, Pedersen S S, Pehrson S, Ricci R, Schalij M J 2010 Europace 12 1673

    [4]

    Shajahan T K, Nayak A R, Pandit R 2009 PLoS One 4 e4738

    [5]

    Wang C N, Ma J 2013 Acta Phys. Sin. 62 084501 (in Chinese)[王春妮, 马军 2013 物理学报 62 084501]

    [6]

    Tandri H, Weinberg S H, Chang K C, Zhu R, Trayanova N A, Tung L, Berger R D 2011 Sci. Tramsl. Med. 3 102ra96

    [7]

    Lou Q, Chen J X, Zhao Y H, Shen F R, Fu Y, Wang L L, Liu Y 2012 Phys. Rev. E 85 026213

    [8]

    Smagina Y, Sheintuch M 2014 arXiv preprint arXiv:arXiv:1410.0506

    [9]

    Ji L, Zhou Y, Li Q, Qiao C, Ouyang Q 2013 Phys. Rev. E 88 042919

    [10]

    Li W, Janardhan A H, Fedorov V V, Sha Q, Schuessler R B, Efimov I R 2011 Circ. Arrhythm. Electrophysiol. 4 917

    [11]

    Pan F, Li W X, Wang X Y, Tang G N 2015 Acta Phys. Sin. 64 218202 (in Chinese)[潘飞, 黎维新, 王小艳, 唐国宁 2015 物理学报 64 218202]

    [12]

    Burton R A B, Klimas A, Ambrosi C M, Tomek J, Corbett A, Entcheva E, Bub G 2015 Nat. Photon. 9 813

    [13]

    Bingen B O, Engels M C, Schalij M J, Jangsangthong W, Neshati Z, Feola I, Ypey D L, Askar S F, Panfilov A V, Pijnappels D A, de Vries A A F 2014 Circ. Res. 102 176

    [14]

    Nussinovitch U, Shinnawi R, Gepstein L 2014 Circ. Res.102 176

    [15]

    Ambrosi C M, Entcheva E 2014 Methods Mol. Boil. 1181 215

    [16]

    Shcherbakov D, Motovilov K, Erofeev I, Astafiev A 2012 Nat. Methods 9 396

    [17]

    Mourot A, Fehrentz T, Le Feuvre Y, Smith C M, Herold C, Dalkara D, Nagy F, Trauner D, Kramer R H 2012 Nat. Methods 9 396

    [18]

    Pourrier M, Williams S, Mcafee D, Belardinelli L, Fedida D 2014 J. Physiol. 592 411

    [19]

    Belardinelli L, Liu G, Smith-Maxwell C, Wang W Q, El-Bizri N, Hirakawa R, Karpinski S, Li C H, Li X J, Crumb W, Wu L, Koltun D, Zablocki J, Yao L, Dhalla A K, Rajamani S, Shryock J C 2013 J. Pharmacol. Exp. Ther. 344 23

    [20]

    Morita N, Lee J H, Xie Y, Sovari A, Qu Z, Weiss J N, Karagueuzian H S 2011 J. Am. Coll. Cardiol. 57 366

    [21]

    Ten Tusscher K H W J, Noble D, Noble P J, Panfilov A V 2008 Am. J. Physiol. Heart Circ. Physiol. 294 H2031

    [22]

    Song Y, Shryock J C, Belardinelli L 2008 Am. J. Physiol.Heart Circ. Physiol. 294 H2031

  • [1] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制. 物理学报, 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [2] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [3] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌. 物理学报, 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [4] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁. 通过放慢钠通道开闭控制心脏中的螺旋波和时空混沌. 物理学报, 2016, 65(19): 198201. doi: 10.7498/aps.65.198201
    [5] 乔成功, 李伟恒, 唐国宁. 细胞外钾离子浓度延迟恢复对螺旋波的影响研究. 物理学报, 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [6] 袁国勇, 张焕, 王光瑞. 多可激性障碍下的螺旋波动力学. 物理学报, 2013, 62(16): 160502. doi: 10.7498/aps.62.160502
    [7] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [8] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [9] 钱郁. 时空调制对可激发介质螺旋波波头动力学行为影响及控制研究. 物理学报, 2012, 61(15): 158202. doi: 10.7498/aps.61.158202
    [10] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [11] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [12] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究. 物理学报, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [13] 祝金川, 李成仁, 齐笳羽, 任旭东, 岳喜爽. CO2激光器对相位共轭波时空混沌系统控制和同步的研究. 物理学报, 2011, 60(10): 104213. doi: 10.7498/aps.60.104213
    [14] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌. 物理学报, 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [15] 钟敏, 唐国宁. 局域反馈抑制心脏中的螺旋波和时空混沌. 物理学报, 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [16] 杨朝羽, 唐国宁. 基于蜂拥控制算法思想的时空混沌耦合反馈控制. 物理学报, 2009, 58(1): 143-149. doi: 10.7498/aps.58.143
    [17] 高继华, 谢玲玲, 彭建华. 利用速度反馈方法控制时空混沌. 物理学报, 2009, 58(8): 5218-5223. doi: 10.7498/aps.58.5218
    [18] 岳立娟, 沈 柯, 徐明奇. 非线性反馈法控制相位共轭波的光学时空混沌. 物理学报, 2007, 56(8): 4378-4382. doi: 10.7498/aps.56.4378
    [19] 陶朝海, 陆君安. 统一混沌系统的控制. 物理学报, 2003, 52(2): 281-284. doi: 10.7498/aps.52.281
    [20] 张旭, 沈柯. 耦合映象格子中时空混沌的控制. 物理学报, 2001, 50(4): 624-628. doi: 10.7498/aps.50.624
计量
  • 文章访问数:  4715
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02
  • 修回日期:  2017-04-03
  • 刊出日期:  2017-07-05

/

返回文章
返回