搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温下表面极化效应对量子点带隙和吸收峰波长的影响

程成 王国栋 程潇羽

引用本文:
Citation:

室温下表面极化效应对量子点带隙和吸收峰波长的影响

程成, 王国栋, 程潇羽

Effects of surface polarization on the bandgap and the absorption-peak wavelength of quantum dot at room temperature

Cheng Cheng, Wang Guo-Dong, Cheng Xiao-Yu
PDF
导出引用
  • 对于离散在本底介质中的纳米晶体量子点,考虑表面极化效应,通过像电荷法建立极化势能项,应用微扰法求解激子的薛定谔方程,得到了与本底介电系数直接相关的量子点带隙解析表达式.对不同本底中尺寸依赖的量子点带隙、第一吸收峰波长、第一吸收峰波长移动进行的计算表明,表面极化效应对量子点的带隙和第一吸收峰波长有明显的影响.随着本底介电系数的增大,量子点的带隙减小,第一吸收峰波长红移.量子点在不同本底中的第一吸收峰波长移动会在某个固定粒径达到最大值,最大值对应的粒径取决于量子点种类.
    The surface polarization energy that arises from the difference in dielectric coefficient between the quantum dot (QD) and the background medium is investigated by the equivalent image charge method. A general expression for the bandgap of QD depending on the dielectric coefficient of background medium is presented by solving the exciton Schrödinger equation with the perturbation method. As examples, the sizedependent bandgaps, bandgap shifts, absorption-peak wavelengths and absorption-peakwavelength shifts of PbSe, PbS and CdSe QDs doped in different background media are determined in detail. There is evidence to show that the effects of surface polarization on the bandgap and the first absorption-peak wavelength of QD are considerable. The bandgap decreases with the increase of dielectric coefficient of background medium, which causes the absorption-peak wavelength to be red shifted. The effect of surface polarization on the bandgap depends substantially on the sign and value of image charge. When the dielectric coefficient of QD is greater than that of background medium, the absorption-peak wavelength comes to blue shift due to surface polarization of QD. On the contrary, the absorption-peak wavelength comes to redshift. The absorption-peak wavelength shifts of QDs doped in different background media will reach a maximum in a certain diameter depending on the kind of QD.
      Corresponding author: Wang Guo-Dong, 1549769953@qq.com;tug86157@temple.edu ; Cheng Xiao-Yu, 1549769953@qq.com;tug86157@temple.edu
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61274124,61474100).
    [1]

    Cheng C, Cheng X Y 2017 Nanophotonics and Applications of Quantum Dots (Beijing:Science Press) pp3-69 (in Chinese)[程成, 程潇羽 2017 量子点纳米光子学及应用(北京:科学出版社)第3–69页]

    [2]

    Narayanaswamy A, Feiner L F, Meijerink A, van der Zaag P J 2009 ACS Nano 3 2539

    [3]

    Zhou Y J, Rabe K M, Vanderbilt D 2015 Phys. Rev. B 92 041102

    [4]

    Brus L E 1984 J. Chem. Phys. 80 4403

    [5]

    Tyrrell E J, Smith J M 2011 Phys. Rev. B 84 165328

    [6]

    Takagahara T 1993 Phys. Rev. B 47 4569

    [7]

    Pereira T A S, de Sousa J S, Freire J A K, Farias G A 2010 J. Appl. Phys. 108 054311

    [8]

    Slachmuylders A F, Partoens B, Magnus W, Peeters F M 2006 Phys. Rev. B 74 235321

    [9]

    El-Kork N, Huisken F, von Borczyskowski C 2011 J. Appl. Phys. 110 074312

    [10]

    Lyu Y R, Hsieh T E 2013 J. Appl. Phys. 113 184303

    [11]

    Rodina A V, Efros Al L 2016 J. Exp. Theor. Phys. 122 554

    [12]

    Murphy C J 2002 Anal. Chem. 74 520A

    [13]

    Pejova B, Grozdanov I 2005 Mater. Chem. Phys. 90 35

    [14]

    Cheng C, Yan H Z 2009 Phys. E:Low Dimension. Syst. and Nanostruc. 41 828

    [15]

    Hyun B R, Chen H, Rey D A, Wise F W, Batt C A 2007 J. Phys. Chem. B 111 5726

    [16]

    Wang L W, Zunger A 1996 Phys. Rev. B 53 9579

    [17]

    Chang K, Xia J B 1997 Solid State Commum. 104 351

    [18]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [19]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [20]

    Cheng C, Li J J 2017 Acta Opt. Sin. 37 01300011 (in Chinese)[程成, 李婕婕 2017 光学学报 37 01300011]

    [21]

    Ushakova E V, Litvin A P, Parfenov P S, Fedorov A V, Artemyev M, Prudnikau A V, Rukhlenko I D, Baranov A V 2012 ACS Nano 6 8913

    [22]

    Cheng C, Li Z W 2016 Acta Opt. Sin. 36 02160011 (in Chinese)[程成, 李志伟 2016 光学学报 36 02160011]

    [23]

    Kumar S, Biswas D 2007 J. Appl. Phys. 102 084305

  • [1]

    Cheng C, Cheng X Y 2017 Nanophotonics and Applications of Quantum Dots (Beijing:Science Press) pp3-69 (in Chinese)[程成, 程潇羽 2017 量子点纳米光子学及应用(北京:科学出版社)第3–69页]

    [2]

    Narayanaswamy A, Feiner L F, Meijerink A, van der Zaag P J 2009 ACS Nano 3 2539

    [3]

    Zhou Y J, Rabe K M, Vanderbilt D 2015 Phys. Rev. B 92 041102

    [4]

    Brus L E 1984 J. Chem. Phys. 80 4403

    [5]

    Tyrrell E J, Smith J M 2011 Phys. Rev. B 84 165328

    [6]

    Takagahara T 1993 Phys. Rev. B 47 4569

    [7]

    Pereira T A S, de Sousa J S, Freire J A K, Farias G A 2010 J. Appl. Phys. 108 054311

    [8]

    Slachmuylders A F, Partoens B, Magnus W, Peeters F M 2006 Phys. Rev. B 74 235321

    [9]

    El-Kork N, Huisken F, von Borczyskowski C 2011 J. Appl. Phys. 110 074312

    [10]

    Lyu Y R, Hsieh T E 2013 J. Appl. Phys. 113 184303

    [11]

    Rodina A V, Efros Al L 2016 J. Exp. Theor. Phys. 122 554

    [12]

    Murphy C J 2002 Anal. Chem. 74 520A

    [13]

    Pejova B, Grozdanov I 2005 Mater. Chem. Phys. 90 35

    [14]

    Cheng C, Yan H Z 2009 Phys. E:Low Dimension. Syst. and Nanostruc. 41 828

    [15]

    Hyun B R, Chen H, Rey D A, Wise F W, Batt C A 2007 J. Phys. Chem. B 111 5726

    [16]

    Wang L W, Zunger A 1996 Phys. Rev. B 53 9579

    [17]

    Chang K, Xia J B 1997 Solid State Commum. 104 351

    [18]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [19]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [20]

    Cheng C, Li J J 2017 Acta Opt. Sin. 37 01300011 (in Chinese)[程成, 李婕婕 2017 光学学报 37 01300011]

    [21]

    Ushakova E V, Litvin A P, Parfenov P S, Fedorov A V, Artemyev M, Prudnikau A V, Rukhlenko I D, Baranov A V 2012 ACS Nano 6 8913

    [22]

    Cheng C, Li Z W 2016 Acta Opt. Sin. 36 02160011 (in Chinese)[程成, 李志伟 2016 光学学报 36 02160011]

    [23]

    Kumar S, Biswas D 2007 J. Appl. Phys. 102 084305

  • [1] 费宏明, 严帅, 徐瑜成, 林瀚, 武敏, 杨毅彪, 陈智辉, 田媛, 张娅敏. 可实现宽频带光波非对称传输的自准直效应光子晶体异质结构. 物理学报, 2020, 69(18): 184214. doi: 10.7498/aps.69.20200538
    [2] 梁宇宏, 李红娟, 尹辑文. 晶格弛豫方法研究PbSe量子点的带内弛豫过程. 物理学报, 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [3] 白旭芳, 赵玉伟, 尹洪武, 额尔敦朝鲁. 氢化杂质和厚度效应对高斯势量子点中二能级体系量子跃迁的影响. 物理学报, 2018, 67(17): 177801. doi: 10.7498/aps.67.20180341
    [4] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [5] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, 2017, 66(9): 097302. doi: 10.7498/aps.66.097302
    [6] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [7] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [8] 额尔敦朝鲁, 白旭芳, 韩超. 抛物量子点中强耦合磁双极化子内部激发态性质. 物理学报, 2014, 63(2): 027501. doi: 10.7498/aps.63.027501
    [9] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [10] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [11] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [12] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [13] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [14] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [15] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [16] 李桂琴, 蔡军. graphene量子点的起伏效应对尺寸的敏感性研究. 物理学报, 2009, 58(9): 6453-6458. doi: 10.7498/aps.58.6453
    [17] 姚文杰, 俞重远, 刘玉敏, 芦鹏飞. 基于连续弹性理论分析量子线线宽对应变分布和带隙的影响. 物理学报, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [18] 陈英杰, 肖景林. 抛物线性限制势二能级系统量子点量子比特的温度效应. 物理学报, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [19] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [20] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
计量
  • 文章访问数:  3181
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 修回日期:  2017-04-27
  • 刊出日期:  2017-07-05

室温下表面极化效应对量子点带隙和吸收峰波长的影响

    基金项目: 国家自然科学基金(批准号:61274124,61474100)资助的课题.

摘要: 对于离散在本底介质中的纳米晶体量子点,考虑表面极化效应,通过像电荷法建立极化势能项,应用微扰法求解激子的薛定谔方程,得到了与本底介电系数直接相关的量子点带隙解析表达式.对不同本底中尺寸依赖的量子点带隙、第一吸收峰波长、第一吸收峰波长移动进行的计算表明,表面极化效应对量子点的带隙和第一吸收峰波长有明显的影响.随着本底介电系数的增大,量子点的带隙减小,第一吸收峰波长红移.量子点在不同本底中的第一吸收峰波长移动会在某个固定粒径达到最大值,最大值对应的粒径取决于量子点种类.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回