搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维复式晶格磁振子晶体的带隙结构

刘艳玲 刘文静 包佳美 曹永军

引用本文:
Citation:

二维复式晶格磁振子晶体的带隙结构

刘艳玲, 刘文静, 包佳美, 曹永军

Band-gap structures of two-dimensional magnonic crystals with complex lattices

Liu Yan-Ling, Liu Wen-Jing, Bao Jia-Mei, Cao Yong-Jun
PDF
导出引用
  • 提出了一种复式晶格磁振子晶体的模型,该模型由两种铁磁材料散射体周期排列在另一种铁磁材料基底中构成. 应用超原胞的思想拓展了平面波展开法,用于数值计算研究自旋波在复式晶格磁振子晶体中的本征性质. 本文数值计算了由两种大小不同的铁(Fe)-铁(Fe)圆柱体交替正方排列在氧化铕(EuO)基底材料中构成的二维复式晶格磁振子晶体的带结构,研究了带隙宽度随体积填充率的变化行为,并与同一铁(Fe)圆柱正方排列在氧化铕(EuO)基底材料中构成的简单晶格磁振子晶体的带隙结构随体积填充率的变化行为进行了比较. 结果表明,利用复式晶格可以优化或调节自旋波带隙的宽度和频率位置.
    Magnonic crystals with spin waves as information carriers are the magnetic counterparts of photonic and phononic crystals. The studies of spin waves or magnons in magnonic crystals have attracted increasing attention, especially for the characteristics of band gaps. However, most of the previous work has paid attention to the magnonic crystals with simple lattices. In this paper, the model of magnonic crystals with complex lattices which is composed of two different scatterers of ferromagnetic materials periodically embedded in another kind of ferromagnetic matrix material is proposed for the first time. Then, the plane-wave expansion method is developed by using the idea of super cells, in which the Fourior coefficient of exchange constant in the space of reciprocal lattice vector is analytically derived, and this method can be used to numerically investigate the eigen-properties of spin waves in magnonic crystals with complex lattices. Of course, it can be applied to the fields of other artificial crystals with complex lattices after the corresponding process, such as photonic crystals and phononic crystals. Band structures of two-dimensional magnonic crystal with complex lattices consisting of two different sizes of Fe cylinders alternately arranged in Euo matrix, are numerically calculated by using the above plane-wave expansion method. The behaviors of band gaps of spin waves changing with the total filling fraction of volume f and also with the mismatch of the filling fraction of volume of two Fe cylinders in EuO matrix are numerically studied. The results of magnonic crystals with complex lattices are compared with those of magnonic crystal with simple latticeic. Some conclusions are summarized as follows. In the same filling fraction of volume f, the width of band gap B4, 5 in the magnonic crystal with complex lattice is always larger than that with the simple lattice, but the width of band gap B8, 9 in the complex lattice is less than that in the simple lattice. When f = (fA + fB)/2 = 0.5, the width of band gap B4, 5 increases as the mismatch between fA and fB increases, but the behavior of the gap B8, 9 is opposite. Moreover, some new spin-wave gaps can be generated by changing the mismatch between fA and fB. This is because the gaps in our studied systems result from the mechanism of Bragg scattering of spin wave in periodic ferromagnetic materials. When the mismatch between fA and fB increases, the multiple scattering effects become stronger. All of these results show that the width or the frequency of band gap can be optimized or tuned by using the complex lattice. Such an approach through fabricating complex lattices may open a new scope for engineering and designing the band gaps of magnonic crystals.
      通信作者: 曹永军, phyjcao@imnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11264028)、内蒙古自治区自然科学基金(批准号:2015BS0106)和内蒙古师范大学2015年度研究生创新基金(批准号:CXJJS15076)资助的课题.
      Corresponding author: Cao Yong-Jun, phyjcao@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264028), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2015BS0106), and the Inner Mongolia Normal University Graduate Students' Research Innovation Fund, China (Grant No. CXJJS15076).
    [1]

    Puszkarski H, Krawczyk M 2003 Solid State Phenomena 94 125

    [2]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2009 Appl. Phys. Lett. 94 083112

    [3]

    Vasseur J O, Dobrzynski L, Djafari-Rouhani B 1996 Phys. Rev. B 54 1043

    [4]

    Chou G X, Lin F L, Li Y P 2003 Acta Phys. Sin. 52 600 (in Chinese) [仇高新, 林芳蕾, 李永平 2003 物理学报 52 600]

    [5]

    Nian X Z, Chen H M 2009 Opt. Optoelectron. Technol. 7 23 in Chinese {2009 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [6]

    Zhao F, Yuan L B 2005 Acta Phys. Sin. 54 4511 (in Chinese) [赵芳, 苑立波 2005 物理学报 54 4511]

    [7]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [8]

    Xu Z L, Wu F G, Mu Z F, Zhang X, Yao Y W 2007 J. Phys. D: Appl. Phys. 40 5584

    [9]

    Wang Q, Zhong Z Y, Jin L C, Tang L C, Li X, Bai F M, Zhang H W 2013 J. Appl.Phys. 113 153905

    [10]

    Cao Y J, Yun G H, Narsu 2011 Acta Phys. Sin. 60 077502 (in Chinese) [曹永军, 云国宏, 那日苏 2011 物理学报 60 077502]

    [11]

    Cao Y J, Yun G H, Liang X X, Bai N 2010 J. Phys. D: Appl. Phys. 43 305005

  • [1]

    Puszkarski H, Krawczyk M 2003 Solid State Phenomena 94 125

    [2]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2009 Appl. Phys. Lett. 94 083112

    [3]

    Vasseur J O, Dobrzynski L, Djafari-Rouhani B 1996 Phys. Rev. B 54 1043

    [4]

    Chou G X, Lin F L, Li Y P 2003 Acta Phys. Sin. 52 600 (in Chinese) [仇高新, 林芳蕾, 李永平 2003 物理学报 52 600]

    [5]

    Nian X Z, Chen H M 2009 Opt. Optoelectron. Technol. 7 23 in Chinese {2009 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [6]

    Zhao F, Yuan L B 2005 Acta Phys. Sin. 54 4511 (in Chinese) [赵芳, 苑立波 2005 物理学报 54 4511]

    [7]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [8]

    Xu Z L, Wu F G, Mu Z F, Zhang X, Yao Y W 2007 J. Phys. D: Appl. Phys. 40 5584

    [9]

    Wang Q, Zhong Z Y, Jin L C, Tang L C, Li X, Bai F M, Zhang H W 2013 J. Appl.Phys. 113 153905

    [10]

    Cao Y J, Yun G H, Narsu 2011 Acta Phys. Sin. 60 077502 (in Chinese) [曹永军, 云国宏, 那日苏 2011 物理学报 60 077502]

    [11]

    Cao Y J, Yun G H, Liang X X, Bai N 2010 J. Phys. D: Appl. Phys. 43 305005

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [3] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231886
    [4] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [5] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [6] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [7] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容. 物理学报, 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [8] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [9] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [10] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [11] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [12] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [13] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [14] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
计量
  • 文章访问数:  5679
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-08-05

/

返回文章
返回