搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于带隙阻波隔振的超材料梁吸隔振一体化设计方法

魏巍 管峰 方鑫

引用本文:
Citation:

基于带隙阻波隔振的超材料梁吸隔振一体化设计方法

魏巍, 管峰, 方鑫

The Integrated Vibration Absorption and Isolation Design Method for Metamaterial Beams Based on Bandgap wave-insulating Vibration Isolatior

Wei Wei, Feng Guan, Xin Fang
PDF
导出引用
  • 先进的振动控制技术在航空航天及船舶领域具有广泛需求。当前,大多数系统的吸振与隔振设计分离,且现有隔振设计难以有效增强低频线谱隔离。因此,本文针对典型欧拉梁,提出了一种吸隔振一体化设计方法。基于声学超材料的带隙波阻原理,研究了振动在横向和纵向的传播特性及其协同调节规律。结果表明,通过使用波阻隔振器实现多种模态的吸振和隔振,无需额外结构即可高效控制低频和宽带振动。在横向通路中,引入局域共振带隙显著提高了低频隔振效果;在纵向通路中,除了近零及Bragg带隙外,波阻隔振器还能产生多种带隙,实现了低频宽带吸振。研究显示,通过叠加纵向与横向带隙可达成100 Hz内87.3%的带隙占比。采用有限元法验证了解析结果的准确性。研究结果为复杂梁、板、管路、框架等结构的吸隔振一体化设计提供了可行思路。
    Advanced vibration control technologies are in high demand for equipment such as aircraft and ships. Currently, most systems separate vibration absorption and isolation design, and existing isolation designs cannot effectively enhance the isolation of low-frequency line spectra. There is an urgent need to develop integrated vibration absorption and isolation designs and enhance low-frequency line spectrum control. In response to this need, this paper focuses on a typical Euler beam and investigates the propagation characteristics of vibrations in both transverse and longitudinal directions, the principles of integrated vibration absorption and isolation design, and the synergistic regulation of bandgaps, based on acoustic metamaterial bandgap wave-insulating vibration control configurations and analytical methods. Ultimately, without adding additional structures, the use of wave-insulating vibration control devices generates multiple modes of vibration absorption and isolation simultaneously, achieving an integrated low-frequency, broadband, and high-efficiency vibration absorption and isolation design. In the transverse vibration isolation pathway, this method achieves broadband vibration isolation while introducing localized resonant bandgaps that significantly enhance low-frequency vibration isolation. In the longitudinal (forward propagation) pathway, in addition to near-zero and Bragg bandgaps, multilayer isolators generate multimodal local resonant bandgaps, achieving low-frequency broadband vibration absorption and effective control across the entire frequency range. This paper elucidates the synergistic modulation of longitudinal and transverse bandgaps, showing that by superimposing these bandgaps, an impressive bandgap ratio of 87.3% below 100 Hz across the entire frequency range can be achieved. Furthermore, an entity structure was designed, and the accuracy of the analytical results was verified using the finite element method. The findings provide feasible design ideas for the integrated vibration absorption and isolation of complex structures such as beams, plates, pipelines, and frames.
  • [1]

    Su C W, Liang R, Wang X R, Zhou T, Li H C 2023 Ship Science and Technology 45 1(in Chinese) [苏常伟, 梁冉, 王雪仁, 周涛, 李海超 2023 舰船科学技术 45 1]

    [2]

    Du D F, He J X, Meng F K 2023 Technical Acoustics 42 552(in Chinese) [杜德锋, 何江贤, 孟凡凯 2023 声学技术 42 552]

    [3]

    Jiang S, Bi K, Ma R, Xu K 2024 J. Sound Vibr. 586 118510

    [4]

    Djedoui N, Ounis A 2022 Pract. Period. Struct. Des. Constr. 27

    [5]

    Nigdeli S M, Bekdas G 2017 KSCE J. Civ. Eng. 912

    [6]

    Lu Z, Wang Z, Zhou Y, Lu X 2018 J. Sound Vibr. 423 18

    [7]

    Xiong H, Kong X R, Liu Y 2015 Journal of Vibration Engineering 28 785(in Chinese) [熊怀, 孔宪仁, 刘源 2015 振动工程学报 28 785]

    [8]

    Rong K, Yang M, Lu Z, Zhang J, Tian L, Wu S 2024 J. Build. Eng. 89 109253

    [9]

    Wei C 2024 J. Braz. Soc. Mech. Sci. Eng. 46

    [10]

    Zhou J, Zhou J, Pan H, Wang K, Cai C, Wen G 2024 Applied mathematics and mechanics 45 1189

    [11]

    Liu T, Li A, Zhang H 2024 Mech. Syst. Signal Proc. 206 110852

    [12]

    Zhao F, Ji J C, Cao S, Ye K, Luo Q 2024 Nonlinear Dyn. 112 1815

    [13]

    Yan G, Lu J, Qi W, Liu F, Yan H, Zhao L, Wu Z, Zhang W 2024 Nonlinear Dyn. 112 5955

    [14]

    Xing X, Chen Z, Feng Z 2023 J. Vib. Eng. Technol. 11 1595

    [15]

    Ma H, Wang K, Zhao H, Zhao C, Xue J, Liang C, Yan B 2023 J. Sound Vibr. 565 117905

    [16]

    Wang Q, Chen Z, Wang Y, Gong N, Yang J, Li W, Sun S 2024 Mech. Syst. Signal Proc. 208 111029

    [17]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 2022

    [18]

    Montero De Espinosa F R, Jiménez E, Torres M 1998 Phys. Rev. Lett. 1208

    [19]

    Hu G, Austin A C M, Sorokin V, Tang L 2021 Mech. Syst. Signal Proc. 146

    [20]

    Liu Z L Z, Zhang X Z X, Mao Y M Y, Zhu Y Z Y, Yang Z Y Z, Chan C C C, Sheng P S P 2000 Science 1734

    [21]

    Yin J F, Cai L, Fang X, Xiao Y, Yang H B, Zhang H J, Zhong J, Zhao H G, Yu D L, Wen J H 2022 Advances In Mechanics 52 508(in Chinese) [尹剑飞, 蔡力, 方鑫, 肖勇, 杨海滨, 张弘佳, 钟杰, 赵宏刚, 郁殿龙, 温激鸿 2022 力学进展 52 508]

    [22]

    Redondo J, Godinho L, Staliunas K, Sánchez-Pérez J V 2023 Appl. Acoust. 109555

    [23]

    Wei W, Guan F, Fang X 2024 Applied mathematics and mechanics 45 1171

    [24]

    Sheng P, Fang X, Wen J, Yu D 2021 J. Sound Vibr. 492 115739

    [25]

    Du C Y, Yu D L, Liu J W, Wen J H 2017 Acta Phys. Sin. 66 321(in Chinese) [杜春阳, 郁殿龙, 刘江伟, 温激鸿 2017 物理学报 66 321]

    [26]

    Changqi Cai J Z K W 2022 Mech. Syst. Signal Proc.

    [27]

    Wang G, Wan S, Hong J, Liu S, Li X 2023 Mech. Syst. Signal Proc. 188 110036

    [28]

    Fan X, Li J, Zhang X, Li F 2022 Int. J. Mech. Sci. 236 107742

    [29]

    Yao D, Xiong M, Luo J, Yao L 2022 Mech. Syst. Signal Proc. 168 108721

    [30]

    Yang Liu L C J D 2022 The Journal of the Acoustical Society of America 3471

    [31]

    Wang S, Wang M, Guo Z 2021 Phys. Lett. A 417 127671

    [32]

    Zhou W, Li Y, Yan G, Zhou J 2024 European Journal of Mechanics - A/Solids 103 105143

    [33]

    Zhuang Dong D C J Y 2021 Appl. Acoust.

    [34]

    Wu J, Bai X C, Xiao Y, Geng M X, Yu D L, Wen J H 2016 Acta Phys. Sin. 65 205(in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 205]

    [35]

    Zhang X H, Zhao C Y, Zheng J Y, Niu Y W, Wei N C 2023 Mechanical Science and Technology for Aerospace Engineering 42 338(in Chinese) [张鑫浩, 赵才友, 郑钧元, 牛亚文, 未娜超 2023 机械科学与技术 42 338]

    [36]

    肖勇.2012 博士 (国防科学技术大学)

    [37]

    Gao Y, Wang L, Sun W, Wu K, Hu H 2022 Acta Mech. 233 477

    [38]

    温激鸿, 蔡力, 郁殿龙, 肖勇, 赵宏刚, 尹剑飞, 杨海滨编著 2018 声学超材料基础理论与应用: 北京:科学出版社) p313

    [39]

    Lei Xiao Oreste S. Bursi H L M W 2023 Int. J. Mech. Sci.

    [40]

    Di Mu K W H S 2022 Int. J. Mech. Sci.

    [41]

    郁殿龙.2006 博士 (国防科学技术大学)

    [42]

    Xiao Y, Wang S, Li Y, Wen J 2021 Mech. Syst. Signal Proc. 159 107777

  • [1] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, doi: 10.7498/aps.71.20212303
    [2] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, doi: 10.7498/aps.70.20211203
    [3] 郭志巍, 郭寒贝, 王婷. 侧向局域共振超构板声振特性. 物理学报, doi: 10.7498/aps.70.20210595
    [4] 刘恩彩, 方鑫, 温激鸿, 郁殿龙. 双稳态结构中的1/2次谐波共振及其对隔振特性的影响. 物理学报, doi: 10.7498/aps.69.20191082
    [5] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, doi: 10.7498/aps.66.140701
    [6] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, doi: 10.7498/aps.65.157501
    [7] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, doi: 10.7498/aps.64.117801
    [8] 胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽. 旋转方形散射体对三角晶格磁振子晶体带结构的优化. 物理学报, doi: 10.7498/aps.64.107501
    [9] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, doi: 10.7498/aps.63.184101
    [10] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, doi: 10.7498/aps.63.178103
    [11] 胡晓颖, 呼和满都拉, 曹永军. 三角晶格磁振子晶体带结构的优化研究. 物理学报, doi: 10.7498/aps.63.147501
    [12] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, doi: 10.7498/aps.62.174102
    [13] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, doi: 10.7498/aps.61.184101
    [14] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, doi: 10.7498/aps.61.034301
    [15] 蒋国平, 陶为俊, 浣石, 肖波齐. 小位移条件下混沌隔振装置的设计与研究. 物理学报, doi: 10.7498/aps.61.070503
    [16] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, doi: 10.7498/aps.60.108901
    [17] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, doi: 10.7498/aps.60.077502
    [18] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响. 物理学报, doi: 10.7498/aps.60.097501
    [19] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, doi: 10.7498/aps.56.4694
    [20] 成步文, 姚 飞, 薛春来, 张建国, 李传波, 毛容伟, 左玉华, 罗丽萍, 王启明. 带隙法测定SiGe/Si材料的应变状态. 物理学报, doi: 10.7498/aps.54.4350
计量
  • 文章访问数:  119
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-10

/

返回文章
返回