搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化电场对可激发介质中螺旋波的控制

潘军廷 何银杰 夏远勋 张宏

引用本文:
Citation:

极化电场对可激发介质中螺旋波的控制

潘军廷, 何银杰, 夏远勋, 张宏

Control of spiral waves in excitable media under polarized electric fields

Pan Jun-Ting, He Yin-Jie, Xia Yuan-Xun, Zhang Hong
PDF
HTML
导出引用
  • 螺旋波在不同的物理、化学和生物系统中普遍存在. 周期外场, 比如极化电场, 尤其是具有旋转对称性的圆极化电场可对螺旋波动力学产生重要影响. 本文综述了极化电场对可激发介质中螺旋波的控制, 包括共振漂移、同步、手征对称性破缺、多臂螺旋波的稳定、次激发介质中的螺旋波、三维回卷波湍流态的控制、心脏组织中螺旋波的去钉扎、心脏组织中螺旋波湍流态的控制等.
    Spiral waves are ubiquitous in diverse physical, chemical, and biological systems. Periodic external fields, such as polarized electric fields, especially circularly polarized electric fields which possess rotation symmetry may have significant effects on spiral wave dynamics. In this paper, control of spiral waves in excitable media under polarized electric fields is reviewed, including resonant drift, synchronization, chiral symmetry breaking, stabilization of multiarmed spiral waves, spiral waves in subexcitable media, control of scroll wave turbulence, unpinning of spiral waves in cardiac tissues, control of spiral wave turbulence in cardiac tissues, etc.
      通信作者: 张宏, hongzhang@zju.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11675141)
      Corresponding author: Zhang Hong, hongzhang@zju.edu.cn
    [1]

    Winfree A T 2001 The Geometry of Biological Time (2nd ed.) (New York: Springer-Verlag) pp258−302

    [2]

    Winfree A T 1972 Science 175 634Google Scholar

    [3]

    Jakubith S, Rotermund H H, Engel W, von Oertzen A, Ertl G 1990 Phys. Rev. Lett. 65 3013Google Scholar

    [4]

    Gray R A, Pertsov A M, Jalife J 1998 Nature 392 75Google Scholar

    [5]

    Christoph J, Chebbok M, Richter C, Schröder-Schetelig J, Bittihn P, Stein S, Uzelac I, Fenton F H, Hasenfuß G, Gilmour Jr R F, Luther S 2018 Nature 555 667Google Scholar

    [6]

    Steinbock O, Schütze J, Müller S C 1992 Phys. Rev. Lett. 68 248Google Scholar

    [7]

    Muñuzuri A P, Gómez-Gesteira M, Pérez-Muñuzuri V, Krinsky V I, Pérez-Villar V 1994 Phys. Rev. E 50 4258

    [8]

    Zhang H, Hu B, Hu G, Xiao J 2003 J. Chem. Phys. 119 4468Google Scholar

    [9]

    Chen J X, Zhang H, Li Y Q 2006 J. Chem. Phys. 124 014505Google Scholar

    [10]

    Ji L, Zhou Y, Li Q, Qiao C, Ouyang Q 2013 Phys. Rev. E 88 042919Google Scholar

    [11]

    Cai M C, Pan J T, Zhang H 2012 Phys. Rev. E 86 016208Google Scholar

    [12]

    Winfree A T 1991 Chaos 1 303Google Scholar

    [13]

    Krinsky V, Hamm E, Voignier V 1996 Phys. Rev. Lett. 76 3854Google Scholar

    [14]

    Pumir A, Nikolski V, Hörning M, Isomura A, Agladze K, Yoshikawa K, Gilmour R, Bodenschatz E, Krinsky V 2007 Phys. Rev. Lett. 99 208101Google Scholar

    [15]

    Li T C, Gao X, Zheng F F, Pan D B, Zheng B, Zhang H 2017 Sci. Rep. 7 8657Google Scholar

    [16]

    Biktashev V N, Holden A V 1995 Chaos, Solitons Fractals 5 575Google Scholar

    [17]

    Biktasheva I V, Barkley D, Biktashev V N, Bordyugov G V, Foulkes A J 2009 Phys. Rev. E 79 056702Google Scholar

    [18]

    Biktasheva I V, Barkley D, Biktashev V N, Foulkes A J 2010 Phys. Rev. E 81 066202Google Scholar

    [19]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press) pp65−66

    [20]

    Chen J X, Zhang H, Li Y Q 2009 J. Chem. Phys. 130 124510Google Scholar

    [21]

    Li T C, Li B W, Zheng B, Zhang H, Panfilov A, Dierckx H 2019 New J. Phys. 21 043012Google Scholar

    [22]

    Nicolis G, Prigogine I 1981 Proc. Natl. Acad. Sci. U.S.A. 78 659Google Scholar

    [23]

    Li B W, Deng L Y, Zhang H 2013 Phys. Rev. E 87 042905Google Scholar

    [24]

    Li B W, Cai M C, Zhang H, Panfilov A V, Dierckx H 2014 J. Chem. Phys. 140 184901Google Scholar

    [25]

    Agladze K I, Krinsky V I 1982 Nature 296 424Google Scholar

    [26]

    Vasiev B, Siegert F, Weijer C 1997 Phys. Rev. Lett. 78 2489Google Scholar

    [27]

    Deng L Y, Zhang H, Li Y Q 2009 Phys. Rev. E 79 036107Google Scholar

    [28]

    Mikhailov A S, Zykov V S 1991 Physica D 52 379Google Scholar

    [29]

    Jung P, Mayer-Kress G 1995 Phys. Rev. Lett. 74 2130Google Scholar

    [30]

    Jung P, Mayer-Kress G 1995 Chaos 5 458Google Scholar

    [31]

    Hakim V, Karma A 1999 Phys. Rev. E 60 5073Google Scholar

    [32]

    Biktashev V N, Holden A V, Zhang H 1994 Philos. Trans. R. Soc. London, Ser. A 347 611Google Scholar

    [33]

    Alonso S, Sagués F, Mikhailov A S 2003 Science 299 1722Google Scholar

    [34]

    Zhang H, Cao Z J, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301Google Scholar

    [35]

    Li T C, Gao X, Zheng F F, Cai M C, Li B W, Zhang H, Dierckx H 2016 Phys. Rev. E 93 012216Google Scholar

    [36]

    Ripplinger C M, Krinsky V I, Nikolski V P, Efimov I R 2006 Am. J. Physiol. Heart Circ. Physiol. 291 H184

    [37]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533Google Scholar

    [38]

    Fenton F H, Luther S, Cherry E M, Otani N F, Krinsky V, Pumir A, Bodenschatz E, Gilmour Jr R F 2009 Circulation 120 467Google Scholar

    [39]

    Luther S, Fenton F H, Kornreich B G, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry E M, Luther G, Hasenfuss G, Krinsky V I, Pumir A, Gilmour Jr R F, Bodenschatz E 2011 Nature 475 235Google Scholar

    [40]

    Feng X, Gao X, Pan D B, Li B W, Zhang H 2014 Sci. Rep. 4 4831

    [41]

    Jalife J 2000 Annu. Rev. Physiol. 62 25Google Scholar

    [42]

    Koster R W, Dorian P, Chapman F W, Schmitt P W, O'Grady S G, Walker R G 2004 Am. Heart J. 147 e1

    [43]

    Babbs C F, Tacker W A, VanVleet J F, Bourland J D, Geddes L A 1980 Am. Heart J. 99 734Google Scholar

    [44]

    Santini M, Pandozi C, Altamura G, Gentilucci G, Villani M, Scianaro M C, Castro A, Ammirati F, Magris B 1999 J. Interv. Card. Electrophysiol. 3 45Google Scholar

    [45]

    Feng X, Gao X, Tang J M, Pan J T, Zhang H 2015 Sci. Rep. 5 13349Google Scholar

  • 图 1  极化电场示意图[11] ${E_x}$, ${E_y}$表示两个相互垂直的交流电场, ${E_0}$, ${\omega _{\rm{e}}}$分别是交流电场的振幅和频率, ${\phi _{\rm{e}}}$, ${\phi _{xy}}$分别是初相位和相位差

    Fig. 1.  Realization sketch of a polarized electric field[11]: ${E_x}$, ${E_y}$ are two ac electric fields perpendicular to each other, where ${E_0}$, ${\omega _{\rm{e}}}$ are the amplitude and the frequency of the electric field, respectively, and ${\phi _{\rm{e}}}$, ${\phi _{xy}}$ are the initial phase and the phase difference, respectively.

    图 2  不同相位差的极化电场[9]

    Fig. 2.  Polarized electric fields at different phase differences[9].

    图 3  无电场作用下, 顺时针旋转的螺旋波[15] (a)强激发介质; (b)弱激发介质

    Fig. 3.  Clockwise (cw) rotating spiral waves without electric field [15]: (a) Highly excitable medium; (b) weakly excitable medium.

    图 4  极化电场作用下顺时针旋转螺旋波的漂移[15] (a),(b)顺时针(${\phi _{xy}} = 0.5{\text{π}}$)、逆时针(${\phi _{xy}} = 1.5{\text{π}}$)旋转的圆极化电场作用下螺旋波的漂移, 其中, ${\omega _{\rm{e}}} = 2\omega $, ${\phi _{\rm{e}}} = 0$, $\varPhi = 0$, $\omega $是螺旋波的频率; (c),(d)漂移速率与相位差${\phi _{xy}}$的关系, 实线为理论结果, 圆圈为数值结果; (e),(f)漂移角与相位差${\phi _{xy}}$的关系, 实线为理论结果, 圆圈为数值结果. 当漂移速率为0(${\phi _{xy}} = 1.5{\text{π}}$), 无漂移角; (a),(c),(e)强激发介质; (b),(d),(f)弱激发介质

    Fig. 4.  Drifting behaviors of cw spirals under the influence of a polarized electric field[15]: (a),(b) Drifting behaviors of spirals under the influence of a cw (${\phi _{xy}} = 0.5{\text{π}}$) and a counterclockwise (ccw) (${\phi _{xy}} = 1.5{\text{π}}$) circularly polarized electric fields (CPEFs) with ${\omega _{\rm{e}}} = 2\omega $, ${\phi _{\rm{e}}} = 0$, $\varPhi = 0$, and $\omega $ being the frequency of the spiral waves; (c),(d) dependence of theoretical (lines) and numerical (circles) drift speeds on the phase difference ${\phi _{xy}}$; (e),(f) dependence of theoretical (lines) and numerical (circles) drift angles on the phase difference ${\phi _{xy}}$. When the drift speed is 0 (${\phi _{xy}} = 1.5{\text{π}}$), the drift angle cannot be defined. (a),(c),(e) Highly excitable medium; (b),(d),(f) Weakly excitable medium.

    图 5  螺旋波端点轨迹[20] (a)−(e)无圆极化电场作用; (f)−(j)有圆极化电场作用, 同一列上下两个图的介质尺寸相同

    Fig. 5.  Trajectories of spiral tips without control (a)−(e) and under control (f)−(j) of CPEF[20]. The size in the same column is identical.

    图 6  圆极化电场强度与频率之间的Arnold tongue区域[21]实线为理论结果, 圆圈为数值结果

    Fig. 6.  Arnold tongue of the (${\omega _{\rm{e}}}, \;{E_0}$)-plane of CPEF[21]: Lines and circles denote the theoretical and the numerical results, respectively.

    图 7  螺旋波湍流态中的手征对称性破缺[23] (a)螺旋波湍流态中逆时针(黑点)、顺时针(白点)旋转的螺旋波; (b)在逆时针旋转的圆极化电场作用下, 系统中仅存留逆时针旋转的螺旋波; (c)当(b)中的圆极化电场变成顺时针旋转后, 系统中仅存留顺时针旋转的螺旋波. ${\omega _{\rm{e}}} = 1.25$, E0 = 0.20

    Fig. 7.  Coherent state out of defect-mediated turbulence accompanied by chiral symmetry breaking[23]: (a) An initial defect-mediated turbulence state consists of ccw spiral defects (black dots) and cw ones (white dots); (b) coherent state with only ccw spiral waves exists in the asymptotic state when the system is coupled to a ccw CPEF with ${\omega _{\rm{e}}} = 1.25$ and ${E_0} = 0.20$; (c) similar to (b) but with a cw CPEF, and in such a case, only cw spiral waves survive in the system.

    图 8  逆时针旋转圆极化电场作用下, 漫游螺旋波对的手征对称性破缺[23] (a) ${E_0} = 0$; (b) ${E_0} = 0.10$, ${\omega _{\rm{e}}} = 1.350 > $${\omega _0}^{{\rm{ms}}}\;({\omega _0}^{{\rm{ms}}} \approx 1.309) $, 其中${\omega _0}^{{\rm{ms}}}$是无圆极化电场作用下, 漫游螺旋波的主频率; (c) ${E_0} = 0.24$, ${\omega _{\rm{e}}} = 1.307 < {\omega _0}^{{\rm{ms}}}$; (d)圆极化电场作用下, 逆时针旋转螺旋波频率${\omega _{\rm{s}}}^{{\rm{ccw}}}$(实心圆圈)及顺时针旋转螺旋波频率${\omega _{\rm{s}}}^{{\rm{cw}}}$(空心圆圈)与圆极化电场频率${\omega _{\rm{e}}}$的关系, 其中${E_0} = 0.10$; (e)圆极化电场作用下, 逆时针旋转螺旋波频率${\omega _{\rm{s}}}^{{\rm{ccw}}}$(实心圆圈)及顺时针旋转螺旋波频率${\omega _{\rm{s}}}^{{\rm{cw}}}$(空心圆圈)与圆极化电场强度${E_0}$的关系, 其中${\omega _{\rm{e}}} = 1.307$

    Fig. 8.  Symmetry breaking of a meandering spiral pair under a ccw CPEF[23]: (a) ${E_0} = 0$; (b) ${E_0} = 0.10$, ${\omega _{\rm{e}}} = 1.350 > $${\omega _0}^{{\rm{ms}}}\;({\omega _0}^{{\rm{ms}}} \approx 1.309) $, where ${\omega _0}^{{\rm{ms}}}$ is the principal frequency of the meandering spiral without the CPEF; (c) E0 = 0.24, ${\omega _{\rm{e}}} = 1.307 < {\omega _0}^{{\rm{ms}}}$; (d) dependence of ${\omega _{\rm{s}}}^{{\rm{ccw}}}$(the frequency of the ccw spiral wave) (full circles) and ${\omega _{\rm{s}}}^{{\rm{cw}}}$(the frequency of the cw spiral wave) (open circles) on ${\omega _{\rm{e}}}$ with ${E_0} = 0.10$;(e) dependence of ${\omega _{\rm{s}}}^{{\rm{ccw}}}$(full circles) and ${\omega _{\rm{s}}}^{{\rm{cw}}}$(open circles) on ${E_0}$ with ${\omega _{\rm{e}}} = 1.307$.

    图 9  圆极化电场对双臂螺旋波的稳定作用[27] (a)无外场作用; (b)有圆极化电场作用, ${E_0} = 1.0$, ${\omega _{\rm{e}}} = 1.22$

    Fig. 9.  Stabilization of two-armed spiral by CPEF[27]: (a) With-out external fields; (b) in the presence of a CPEF with ${E_0} = 1.0$, ${\omega _{\rm{e}}} = 1.22$.

    图 10  圆极化电场对双臂螺旋波作用的相图[27] BU, TS分别表示破碎、稳定区域; SS表示电场过弱, 不足以稳定双臂螺旋波而使其衰退为单臂螺旋波的区域; ${\omega _0} = 1.24$是单臂螺旋波的频率

    Fig. 10.  The phase diagram for the effects of CPEF on two-armed spiral[27]: BU, TS denote the breakup and the stabi-lization regions, respectively, and SS means the region where the electric field is not strong enough to stabilize the two-armed spiral and it decays into two single-armed spirals. The frequency of the single-armed spiral ${\omega _0} = 1.24$.

    图 11  次激发介质中半平面波的演化[11] (a)−(c)无外场作用; (d)−(f)有圆极化电场作用. ${E_0} = 0.2$, ${\omega _{\rm{e}}} = 0.2$

    Fig. 11.  The evolution of a broken plane wave in the subexcitable system without (a)−(c) and with (d)−(f) CPEFs[11]. ${E_0} = 0.2$, ${\omega _{\rm{e}}} = 0.2$.

    图 12  圆极化电场使次激发介质产生螺旋波的机制分析[11], ${E_0} = 0.1$ (a)圆极化电场对螺旋波端点的作用示意图; (b)${c_B} + {c_E}$${\omega _{\rm{e}}}$的变化关系; (c)${c_{\rm{t}}}$的半解析解与数值解的比较

    Fig. 12.  The mechanism analyses for spiral waves sustained by CPEF in subexcitable media[11], ${E_0} = 0.1$: (a) The sketch of a spiral wave tip submitted to a CPEF; (b) results of ${c_B} + {c_E}$varying with ${\omega _{\rm{e}}}$; (c) the comparison of the semi-analytical ${c_{\rm{t}}}$ with the numerical ${c_{\rm{t}}}$.

    图 13  圆极化电场作用下, 回卷波湍流态从无序走向有序[35] ${E_0} = 0.4$, ${\omega _{\rm{e}}} = {\omega _0} = 1.2455$, 其中${\omega _0}$表示螺旋波的频率; $t = 0$, 施加圆极化电场作用; 黄线表示奇异线

    Fig. 13.  Ordering of scroll wave turbulence by switching on a ccw CPEF at $t = 0$ with ${E_0} = 0.4$ and rotation frequency ${\omega _{\rm{e}}} = 1.2455$ equal to the natural spiral wave frequency ${\omega _0}$[35]. Filaments are shown in yellow.

    图 14  圆极化电场抑制(实心圆圈)回卷波湍流态的参数区域中, 电场强度${E_0}$与归一化频率${\omega _{\rm{e}}}/{\omega _0}$的关系[35], 交叉表示不能抑制回卷波湍流态

    Fig. 14.  Parameter region of scroll wave turbulence suppression (full circles) as a function of external field amplitude ${E_0}$ and normalized frequency ${\omega _{\rm{e}}}/{\omega _0}$[35]. Crosses denote failure of ordering turbulence.

    图 15  锁相回卷波的奇异线张力[35]

    Fig. 15.  Filament tension of phase-locked scroll waves[35].

    图 16  圆极化电场(a)(c)和匀强电场(b)(d)作用下的膜电势分布[40] (a) Luo-Rudy模型, ${E_0} = 0.05\;{\rm{V/cm}}$, ${\omega _{\rm{e}}} =$ 0.2 rad/ms; (b) Luo-Rudy模型, ${E_0} = 0.05\;{\rm{V/cm}}$; (c) Barkley模型, ${E_0} = 0.05$, ${\omega _{\rm{e}}} = 4$; (d) Barkley模型, ${E_0} = 0.05$. R表示缺陷半径, Luo-Rudy模型中, $R = 0.32\;{\rm{cm}}$; Barkley模型中, $R = 3$. 红色点箭头表示电场方向, 红色曲线箭头表示圆极化电场逆时针旋转. 围绕着缺陷的红色、蓝色分别表示去极化、超极化区域

    Fig. 16.  Distribution of the membrane potential induced by CPEF and uniform electric field (UEF)[40]: (a) CPEF in Luo-Rudy model, ${E_0} = 0.05\;{\rm{V/cm}}$, ${\omega _{\rm{e}}} = 0.2\;{\rm{rad/ms}}$; (b) UEF in Luo-Rudy model, ${E_0} = 0.05\;{\rm{V/cm}}$; (c) CPEF in Barkley model, ${E_0} = 0.05$, ${\omega _{\rm{e}}} = 4$; (d) UEF in Barkley model, ${E_0} = 0.05$.In Luo-Rudy model, the obstacle size $R = 0.32\;{\rm{cm}}$, and in Barkley model, $R = 3$. The red dotted arrows represent the directions of electric fields. The red curved arrows mean CPEFs rotate counterclockwise. The red and the blue regions around obstacles demonstrate de-polarizations and hyper-polarizations, respectively.

    图 17  圆极化电场去除顺时针旋转的钉扎螺旋波[40] (a) Luo-Rudy模型, 螺旋波频率${\omega _{\rm{s}}} = 0.136\;{\rm{rad/ms}}$, 圆极化电场${E_0} = 0.7\;{\rm{V/cm}}$, ${\omega _{\rm{e}}} = 0.1\;{\rm{rad/ms}}$; 电场作用时间t = 0—46.2 ms, 圆极化电场相对于x轴的初相位为${\phi _{\rm{e}}}$; 螺旋波相对于x轴的初相位${\phi _{\rm{s}}} = 0$; (b) Barkley模型, 螺旋波频率${\omega _{\rm{s}}} = 1.024$, 圆极化电场${E_0} = 1.8$, ${\omega _{\rm{e}}} = 3.686$; 电场作用时间t = 0—6. N和N' 表示不同时刻圆极化电场激发产生的激发波, S和S' 分别表示初始的钉扎螺旋波、去钉扎后的螺旋波. 白色箭头表示波的传播方向

    Fig. 17.  Unpinning the cw rotating anchored spiral by CPEF[40]: (a) Luo-Rudy model, the frequency of spiral ${\omega _{\rm{s}}} = 0.136\;{\rm{rad/ms}}$; ${E_0} = 0.7\;{\rm{V/cm}}$, ${\omega _{\rm{e}}} = 0.1\;{\rm{rad/ms}}$; CPEF is applied from $t = 0$ to $t = 46.2\;{\rm{ms}}$. ${\phi _{\rm{e}}}$ is the initial phase of CPEF relative to x axis; ${\phi _{\rm{s}}}$ is the initial phase of the anchored spiral front relative to x axis and sets as zero; (b) Barkley model, ${\omega _{\rm{s}}} = 1.024$, ${E_0} = 1.8$, ${\omega _{\rm{e}}} = 3.686$; CPEF is applied from $t = 0$ to $t = 6$. N and N' represent different new waves nucleated by CPEF in different time. S and S' represent the initial anchord spiral and the new free spiral, respectively. White arrows are the propagation directions of waves

    图 18  Barkley模型中, 圆极化电场(灰色区域)和匀强电场(阴影区域)去除钉扎螺旋波的适用范围[40] SW, NW, RW和BI分别表示螺旋波、无波、收缩波和双稳区域; 圆极化电场${E_0} = 1.8$, ${\omega _{\rm{e}}} = 3.6\;{\omega _{\rm{s}}}$; 匀强电场${E_0} = 7$

    Fig. 18.  Unpinning scope of CPEF (gray) and UEF (shaded) in Barkley model[40]: SW, NW, RW and BI regions represent spiral waves, no wave, retracting waves and bi-stability, respectively; for CPEF, ${E_0} = 1.8$, ${\omega _{\rm{e}}} = 3.6\;{\omega _{\rm{s}}}$ and for UEF, ${E_0} = 7$.

    图 19  静息态下圆极化电场及其激发产生的圆形波列之间的频率关系[45] ${E_0} = 1.0\;{\rm{V/cm}}$, $0.065\;{\rm{rad/ms}} \leqslant {\omega _{{\rm{CPEF}}}} \leqslant $ 0.22 rad/ms; ${\omega _{{\rm{cir}}}}$是圆形波列的频率; ${\omega _{{\rm{tur}}}}$是螺旋波湍流态的主频率

    Fig. 19.  The frequency relations between the circular wave train and CPEF in a two-dimensional quiescent medium[45]: ${E_0} = 1.0\;{\rm{V/cm}}$, $0.065\;{\rm{rad/ms}} \leqslant {\omega _{{\rm{CPEF}}}} \leqslant $ 0.22 rad/ms; ${\omega _{{\rm{cir}}}}$ is the frequency of the circular wave trains, and ${\omega _{{\rm{tur}}}}$ is the dominant frequency of the spiral turbulence.

    图 20  圆极化电场抑制螺旋波湍流态[45] ${E_0} = 1.0\;{\rm{V/cm}}$, ${\omega _{{\rm{CPEF}}}} = 0.14\;{\rm{rad/ms}}$ (a) t = 0; (b) t = 1000 ms; (c) t = 1800 ms; (d) t = 2800 ms

    Fig. 20.  Suppression of spiral turbulence by CPEF[45]: ${E_0} = 1.0\;{\rm{V/cm}}$, ${\omega _{{\rm{CPEF}}}} = 0.14\;{\rm{rad/ms}}$: (a) t = 0; (b) t = 1000 ms; (c) t = 1800 ms; (d) t = 2800 ms.

    图 21  静息态下匀强电场及其激发产生的圆形波列之间的频率关系[45] ${E_0} = 1.0\;{\rm{V/cm}}$, $0.065\;{\rm{rad/ms}} \leqslant {\omega _{{\rm{UEF}}}} \leqslant $ 0.22 rad/ms; 脉冲间隔为$10\;{\rm{ms}}$; ${\omega _{{\rm{cir}}}}$是圆形波列的频率; ${\omega _{{\rm{tur}}}}$是螺旋波湍流态的主频率

    Fig. 21.  The frequency relations between the circular wave train and UEF in a two-dimensional quiescent medium[45]: ${E_0} = 1.0\;{\rm{V/cm}}$, $0.065\;{\rm{rad/ms}} \leqslant {\omega _{{\rm{CPEF}}}} \leqslant 0.22\;{\rm{rad/ms}}$; the pulse duration is $10\;{\rm{ms}}$; ${\omega _{{\rm{cir}}}}$ is the frequency of the circular wave trains, and ${\omega _{{\rm{tur}}}}$ is the dominant frequency of the spiral turbulence.

  • [1]

    Winfree A T 2001 The Geometry of Biological Time (2nd ed.) (New York: Springer-Verlag) pp258−302

    [2]

    Winfree A T 1972 Science 175 634Google Scholar

    [3]

    Jakubith S, Rotermund H H, Engel W, von Oertzen A, Ertl G 1990 Phys. Rev. Lett. 65 3013Google Scholar

    [4]

    Gray R A, Pertsov A M, Jalife J 1998 Nature 392 75Google Scholar

    [5]

    Christoph J, Chebbok M, Richter C, Schröder-Schetelig J, Bittihn P, Stein S, Uzelac I, Fenton F H, Hasenfuß G, Gilmour Jr R F, Luther S 2018 Nature 555 667Google Scholar

    [6]

    Steinbock O, Schütze J, Müller S C 1992 Phys. Rev. Lett. 68 248Google Scholar

    [7]

    Muñuzuri A P, Gómez-Gesteira M, Pérez-Muñuzuri V, Krinsky V I, Pérez-Villar V 1994 Phys. Rev. E 50 4258

    [8]

    Zhang H, Hu B, Hu G, Xiao J 2003 J. Chem. Phys. 119 4468Google Scholar

    [9]

    Chen J X, Zhang H, Li Y Q 2006 J. Chem. Phys. 124 014505Google Scholar

    [10]

    Ji L, Zhou Y, Li Q, Qiao C, Ouyang Q 2013 Phys. Rev. E 88 042919Google Scholar

    [11]

    Cai M C, Pan J T, Zhang H 2012 Phys. Rev. E 86 016208Google Scholar

    [12]

    Winfree A T 1991 Chaos 1 303Google Scholar

    [13]

    Krinsky V, Hamm E, Voignier V 1996 Phys. Rev. Lett. 76 3854Google Scholar

    [14]

    Pumir A, Nikolski V, Hörning M, Isomura A, Agladze K, Yoshikawa K, Gilmour R, Bodenschatz E, Krinsky V 2007 Phys. Rev. Lett. 99 208101Google Scholar

    [15]

    Li T C, Gao X, Zheng F F, Pan D B, Zheng B, Zhang H 2017 Sci. Rep. 7 8657Google Scholar

    [16]

    Biktashev V N, Holden A V 1995 Chaos, Solitons Fractals 5 575Google Scholar

    [17]

    Biktasheva I V, Barkley D, Biktashev V N, Bordyugov G V, Foulkes A J 2009 Phys. Rev. E 79 056702Google Scholar

    [18]

    Biktasheva I V, Barkley D, Biktashev V N, Foulkes A J 2010 Phys. Rev. E 81 066202Google Scholar

    [19]

    Pikovsky A, Rosenblum M, Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press) pp65−66

    [20]

    Chen J X, Zhang H, Li Y Q 2009 J. Chem. Phys. 130 124510Google Scholar

    [21]

    Li T C, Li B W, Zheng B, Zhang H, Panfilov A, Dierckx H 2019 New J. Phys. 21 043012Google Scholar

    [22]

    Nicolis G, Prigogine I 1981 Proc. Natl. Acad. Sci. U.S.A. 78 659Google Scholar

    [23]

    Li B W, Deng L Y, Zhang H 2013 Phys. Rev. E 87 042905Google Scholar

    [24]

    Li B W, Cai M C, Zhang H, Panfilov A V, Dierckx H 2014 J. Chem. Phys. 140 184901Google Scholar

    [25]

    Agladze K I, Krinsky V I 1982 Nature 296 424Google Scholar

    [26]

    Vasiev B, Siegert F, Weijer C 1997 Phys. Rev. Lett. 78 2489Google Scholar

    [27]

    Deng L Y, Zhang H, Li Y Q 2009 Phys. Rev. E 79 036107Google Scholar

    [28]

    Mikhailov A S, Zykov V S 1991 Physica D 52 379Google Scholar

    [29]

    Jung P, Mayer-Kress G 1995 Phys. Rev. Lett. 74 2130Google Scholar

    [30]

    Jung P, Mayer-Kress G 1995 Chaos 5 458Google Scholar

    [31]

    Hakim V, Karma A 1999 Phys. Rev. E 60 5073Google Scholar

    [32]

    Biktashev V N, Holden A V, Zhang H 1994 Philos. Trans. R. Soc. London, Ser. A 347 611Google Scholar

    [33]

    Alonso S, Sagués F, Mikhailov A S 2003 Science 299 1722Google Scholar

    [34]

    Zhang H, Cao Z J, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301Google Scholar

    [35]

    Li T C, Gao X, Zheng F F, Cai M C, Li B W, Zhang H, Dierckx H 2016 Phys. Rev. E 93 012216Google Scholar

    [36]

    Ripplinger C M, Krinsky V I, Nikolski V P, Efimov I R 2006 Am. J. Physiol. Heart Circ. Physiol. 291 H184

    [37]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533Google Scholar

    [38]

    Fenton F H, Luther S, Cherry E M, Otani N F, Krinsky V, Pumir A, Bodenschatz E, Gilmour Jr R F 2009 Circulation 120 467Google Scholar

    [39]

    Luther S, Fenton F H, Kornreich B G, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry E M, Luther G, Hasenfuss G, Krinsky V I, Pumir A, Gilmour Jr R F, Bodenschatz E 2011 Nature 475 235Google Scholar

    [40]

    Feng X, Gao X, Pan D B, Li B W, Zhang H 2014 Sci. Rep. 4 4831

    [41]

    Jalife J 2000 Annu. Rev. Physiol. 62 25Google Scholar

    [42]

    Koster R W, Dorian P, Chapman F W, Schmitt P W, O'Grady S G, Walker R G 2004 Am. Heart J. 147 e1

    [43]

    Babbs C F, Tacker W A, VanVleet J F, Bourland J D, Geddes L A 1980 Am. Heart J. 99 734Google Scholar

    [44]

    Santini M, Pandozi C, Altamura G, Gentilucci G, Villani M, Scianaro M C, Castro A, Ammirati F, Magris B 1999 J. Interv. Card. Electrophysiol. 3 45Google Scholar

    [45]

    Feng X, Gao X, Tang J M, Pan J T, Zhang H 2015 Sci. Rep. 5 13349Google Scholar

  • [1] 邓凌云, 谢增辉, 王路. 径向电脉冲对钉扎螺旋波的脱钉研究. 物理学报, 2023, 72(6): 068202. doi: 10.7498/aps.72.20221784
    [2] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制. 物理学报, 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [3] 韦宾, 唐国宁, 邓敏艺. 具有早期后除极化现象的可激发系统中螺旋波破碎方式研究. 物理学报, 2018, 67(9): 090501. doi: 10.7498/aps.67.20172505
    [4] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌. 物理学报, 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [5] 王小艳, 汪芃, 李倩昀, 唐国宁. 用晚钠电流终止心脏中的螺旋波和时空混沌. 物理学报, 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [6] 潘飞, 黎维新, 王小艳, 唐国宁. 用低通滤波方法终止心脏组织中的螺旋波和时空混沌. 物理学报, 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [7] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [8] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [9] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [10] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [11] 钱郁. 时空调制对可激发介质螺旋波波头动力学行为影响及控制研究. 物理学报, 2012, 61(15): 158202. doi: 10.7498/aps.61.158202
    [12] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [13] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [14] 韦海明, 唐国宁. 离散可激发介质中早期后去极化对螺旋波影响的数值研究. 物理学报, 2011, 60(3): 030501. doi: 10.7498/aps.60.030501
    [15] 戴瑜, 韦海明, 唐国宁. 非均匀激发介质中螺旋波的演化. 物理学报, 2010, 59(9): 5979-5984. doi: 10.7498/aps.59.5979
    [16] 唐冬妮, 张旭, 任卫, 唐国宁. 可激发介质中环形异质介质导致自维持靶波. 物理学报, 2010, 59(8): 5313-5318. doi: 10.7498/aps.59.5313
    [17] 戴瑜, 唐国宁. 离散可激发介质激发性降低的几种起因. 物理学报, 2009, 58(3): 1491-1496. doi: 10.7498/aps.58.1491
    [18] 尹小舟, 刘 勇. 非连续反馈控制激发介质中的螺旋波. 物理学报, 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [19] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波. 物理学报, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
    [20] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制. 物理学报, 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
计量
  • 文章访问数:  10671
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 修回日期:  2020-01-17
  • 刊出日期:  2020-04-20

/

返回文章
返回