搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两层老化心肌组织中螺旋波和时空混沌的控制

李倩昀 白婧 唐国宁

引用本文:
Citation:

两层老化心肌组织中螺旋波和时空混沌的控制

李倩昀, 白婧, 唐国宁

Control of spiral wave and spatiotemporal chaos in two-layer aging cardiac tissues

Li Qian-Yun, Bai Jing, Tang Guo-Ning
PDF
HTML
导出引用
  • 心脏出现电螺旋波和时空混沌会导致心律失常, 心肌细胞与成纤维细胞电耦合(M-F耦合)导致心肌组织结构改变也会引起心律失常, 如何消除由螺旋波、时空混沌导致的心律失常是科学工作者十分关注的问题. 本文构造了由心肌细胞和成纤维细胞组成的双层复合介质, 采用Luo-Rudy相I心脏模型及被动成纤维细胞模型研究了M-F耦合对螺旋波形成的影响, 以及螺旋波和时空混沌的控制, 提出用提高细胞之间的耦合强度来控制复合介质中的螺旋波和时空混沌, 数值模拟结果表明: M-F耦合对螺旋波动力学有重要影响, 随着成纤维细胞密度的增加, M-F耦合会导致螺旋波漫游和破碎成时空混沌, 甚至会产生从时空混沌(或螺旋波)到无波的相变. 通过提高细胞之间耦合强度来消除复合介质中的螺旋波和时空混沌, 只在大部分情况下有效, 依赖于成纤维细胞所起的作用. 当成纤维细胞起到电流吸收器的作用时, 虽然大部分情况下可以通过提高细胞之间耦合强度来消除螺旋波和时空混沌, 但是可控区较小. 当成纤维细胞起到电流源的作用时, 提高细胞之间耦合强度使之超过临界值基本都可以有效控制螺旋波和时空混沌, 且可控区比前者大为增加, 提高控制效果的关键是提高心肌细胞之间的耦合强度.
    Cardiac arrhythmias can be caused by the occurrence of electrical spiral waves and spatiotemporal chaos in the cardiac tissues, as well as by the changes of cardiac tissues resulting from the electrical coupling of cardiomyocytes to fibroblasts (M-F coupling). How to control the arrhythmia induced by spiral wave or spatiotemporal chaos is the problem which has attracted much attention of scientists. In this paper, a two-layer composite medium is constructed by using cardiomyocytes and fibroblasts. Luo-Rudy phase I cardiac model and passive model of fibroblast are used to study the effects of the M-F coupling on the formation of spiral wave and the control of spiral wave and spatiotemporal chaos in a two-layer composite medium. A control scheme that the spiral waves and spatiotemporal chaos are controlled by increasing the coupling strength between cells is proposed. The numerical results show that the M-F coupling has an important influence on the dynamics of spiral wave. With the increase of the density of fibroblasts, the M-F coupling may result in spiral wave meandering and spiral wave breaking into spatiotemporal chaos, and even induce the transition from spatiotemporal chaos (or spiral wave) to no wave. The eliminating spiral wave and spatiotemporal chaos in the composite medium by increasing the coupling strength between cells is only effective in most of cases, depending on the role played by fibroblasts. When fibroblasts act as current sinks for the cardiomyocyte, the spiral wave and spatiotemporal chaos are effectively eliminated only in most of cases by increasing the coupling strength between cells, and the controlled area is small. When fibroblasts act as a current source for the cardiomyocyte, increasing the coupling strength between cells to a value higher than a critical value can effectively terminate spiral wave and spatiotemporal chaos, and the controllable area is greatly increased compared with the former. Increasing the coupling strength between cardiomyocytes is a key factor in controlling the spiral waves and spatiotemporal chaos.
      通信作者: 唐国宁, tangguoning@sohu.com
    • 基金项目: 国家自然科学基金 (批准号: 11565005, 11947413)资助的课题
      Corresponding author: Tang Guo-Ning, tangguoning@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11565005, 11947413)
    [1]

    Johnson R D, Camelliti P 2018 Int. J. Mol. Sci. 19 866Google Scholar

    [2]

    Camelliti P, Borg T K, Kohl P 2005 Cardiovasc. Res. 65 40Google Scholar

    [3]

    Greisas A, Zlochiver S 2016 Cardiovasc. Eng. Techn. 7 290Google Scholar

    [4]

    Sachse F B, Moreno A P, Abildskov J A 2008 Ann. Biomed. Eng. 36 41Google Scholar

    [5]

    Peters N S, Wit A L 1998 Circulation 97 1746Google Scholar

    [6]

    Jacquemet V, Henriquez C S 2008 Am. J. Physiol. Heart Circ. Physiol. 294 H2040Google Scholar

    [7]

    Xie Y F, Garfinkel A, Weiss J N, Qu Z L 2009 Am. J. Physiol. Heart Circ. Physiol. 297 H775Google Scholar

    [8]

    Nguyen T P, Xie Y F, Garfinkel A, Qu Z L, Weiss J N 2012 Cardiovasc. Res. 93 242Google Scholar

    [9]

    Brown T R, Krogh-Madsen T, Christini D J 2015 BioMed. Res. Int. 2015 465714Google Scholar

    [10]

    Chilton L, Giles W R, Smith G L 2007 J. Physi. 583 225Google Scholar

    [11]

    Louault C, Benamer N, Faivre J F, Potreau D, Bescond J 2008 BBA-Biomembranes 1778 2097Google Scholar

    [12]

    Vasquez C, Mohandas P, Louie K L, Benamer N, Bapat A C, Morley G E 2010 Circulation Research 107 1011Google Scholar

    [13]

    Baudino T A, McFadden A, Fix C, Hastings J, Price R, Borg T K 2008 Microsc. Microanal. 14 117Google Scholar

    [14]

    Shajahan T K, Nayak A R, Pandit R 2009 Plos One 4 e4738Google Scholar

    [15]

    Nayak A R, Shajahan T K, Panfilov A V, Pandit R 2013 Plos One 8 e72950Google Scholar

    [16]

    Kofron C M, Kim T Y, King M E, Xie A, Feng F, Park E, Qu Z, Choi B R, Mende U 2017 Am. J. Physiol. Heart Circ. Physiol. 313 H810Google Scholar

    [17]

    Kohl P, Camelliti P, Burton F L, Smith G L 2005 J. Electrocardiol 38 45Google Scholar

    [18]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501Google Scholar

  • 图 1  不同参数下在$\rho \text{-} n$参数平面上的相图(■代表稳定螺旋波; ●代表漫游单螺旋波; ◆代表不稳定螺旋波; ▼代表时空混沌态; ▲代表介质无波) (a) $ {G}_{\rm{f}}=1\;{\rm{ns}}$, ${G}_{\rm{gap}}= $$ 3\;{\rm{ns}}$; (b) $ {G}_{\rm{f}}=4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$

    Fig. 1.  Phase diagrams on the $\rho \text{-} n$ parameter plane with different parameters: (a) $ {G}_{\rm{f}}=1\;{\rm{ns}}$, $ {G}_{\rm{gap}}=3\;{\rm{ns}}$; (b) ${G}_{\rm{f}}= $$ 4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$. Black square, stable spiral wave; black circle, meandering of single spiral wave; black rhombus, unstable spiral wave; black down-triangle, spatiotemporal chaos; black up-triangle, no wave can propagate in the medium.

    图 2  不同参数下其中一层心肌层的螺旋波斑图 (a) ${G}_{\rm{f}}= $$ 4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$, $\rho = 20{\text{%}}$, $n = {\rm{1}}$; (b) $ {G}_{\rm{f}}=4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$, $\rho = 30{\text{%}}$, $n = {\rm{3}}$; (c) $ {G}_{\rm{f}}=4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$, $\rho = 40{\text{%}}$, $n = {\rm{2}}$; (d) $ {G}_{\rm{f}}= $$ 1\;{\rm{ns}}$, $ {G}_{\rm{gap}}=3\;{\rm{ns}}$, $\rho = {\rm{4}}0{\text{%}}$, $n = $4

    Fig. 2.  Pattern of spiral wave in one layer cardiac tissue for different parameters: (a) $ {G}_{\rm{f}}=4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$, $\rho = 20{\text{%}}$, $n = {\rm{1}}$; (b) $ {G}_{\rm{f}}=4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$, $\rho = 30{\text{%}}$, $n = {\rm{3}}$; (c) ${G}_{\rm{f}}= 4\;{\rm{ns}}$, $ {G}_{\rm{gap}}=1\;{\rm{ns}}$, $\rho = 40{\text{%}}$, $n = {\rm{2}}$; (d) ${G}_{\rm{f}}= $$ 1 \;{\rm{ns}}$, $ {G}_{\rm{gap}}=3\;{\rm{ns}}$, $\rho = {\rm{4}}0{\text{%}}$, $n = {\rm{4}}$.

    图 3  不同参数下成纤维细胞静息电位随时间变化 (a) ${G_{\rm{f}}} = 1\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 3\;{\rm{ns}}$, $n = 2$, $\rho = 30{\text{%}}$; (b) ${G_{\rm{f}}} = 1\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 3\;{\rm{ns}}$, $n = 5$, $\rho = 30{\text{%}}$; (c) ${G_{\rm{f}}} = 4\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 1\;{\rm{ns}}$, $n = 2$, $\rho = 30{\text{%}}$; (d) ${G_{\rm{f}}} = 4\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 1\;{\rm{ns}}$, $n = 5$, $\rho = 30{\text{%}}$

    Fig. 3.  Evolution of the resting potential of a fibroblast for different control parameters: (a) ${G_{\rm{f}}} = 1\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 3\;{\rm{ns}}$, $n = 2$, $\rho = 30{\text{%}}$; (b) ${G_{\rm{f}}} = 1\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 3\;{\rm{ns}}$, $n = 5$, $\rho = 30{\text{%}}$; (c) ${G_{\rm{f}}} = 4\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 1\;{\rm{ns}}$, $n = 2$, $\rho = 30{\text{%}}$; (d) ${G_{\rm{f}}} = 4\;{\rm{ns}}$, ${G_{{\rm{gap}}}} = 1\;{\rm{ns}}$, $n = 5$, $\rho = 30{\text{%}}$.

    图 4  图1(a)对应的各初态下在$D \text{-} {G_{{\rm{gap}}}}$参数平面上的相图, 其中, 第1行到第4行各图参数分别对应$\rho = $ 10%, 20%, 30%, 40%; 第1列到第5列各图参数分别对应$n = 1, \;2, \;3, \;4, \;5$; ■代表不可控, Δ代表慢可控, □代表快可控

    Fig. 4.  Phase diagram in the $D \text{-} {G_{{\rm{gap}}}}$ parameter plane for different initial states showed in Fig. 1(a). The parameter $\rho $ of the panels from the first row to the fourth row equals to 10%, 20%, 30%, 40%, respectively. The parameter $n$ of the panels from the first column to the fifth column equals to 1, 2, 3, 4, 5, respectively. Black and hollow squares represent the uncontrolled point and fast control point, respectively. Hollow up-triangle represents the slow control point.

    图 5  图1(b) 对应的各初态下在$D \text{-} {G_{{\rm{gap}}}}$参数平面上的相图, 其中, 第1行到第4行各图参数分别对应$\rho =$ 10%, 20%, 30%, 40%; 第1列到第5列各图参数分别对应$n = 1, \;2, \;3, \;4, \;5$; ■代表不可控, Δ代表慢可控, □代表快可控

    Fig. 5.  Phase diagram in the $D \text{-} {G_{{\rm{gap}}}}$ parameter plane for different initial states showed in Fig. 1(b). The parameter $\rho $ of the panels from the first row to the fourth row equals to 10%, 20%, 30%, 40%, respectively. The parameter $n$ of the panels from the first column row to the fifth column equals to 1, 2, 3, 4, 5, respectively. Black and hollow squares represent the uncontrolled point and fast control point, respectively. Hollow up-triangle represents the slow control point.

    图 6  在不同的初态斑图和控制参数下平均膜电位差随时间的变化 (a)初态为图2(b), $D = 0{\rm{.004}}\;{\rm{c}}{{\rm{m}}^2}/{\rm{ms}}$, ${G_{{\rm{gap}}}} = {\rm{10\; ns}}$; (b)初态为图2(a), $D = 0{\rm{.003}}\;{\rm{c}}{{\rm{m}}^2}/{\rm{ms}}$, ${G_{{\rm{gap}}}} = $$ {\rm{10\; ns}}$; (c)初态为图2(c), $D = 0{\rm{.004}}\;{\rm{c}}{{\rm{m}}^2}/{\rm{ms}}$, ${G_{{\rm{gap}}}} = {\rm{12\; ns}}$

    Fig. 6.  Evolution of the average membrane potential difference for different control parameters and initial states: (a) The initial state is shown in Fig. 2(b), $D = 0{\rm{.004}}\;{\rm{c}}{{\rm{m}}^2}/{\rm{ms}}$, ${G_{{\rm{gap}}}} = {\rm{10\; ns}}$; (b) the initial state is shown in Fig. 2(a), $D = 0{\rm{.003}}\;{\rm{c}}{{\rm{m}}^2}/{\rm{ms}}$, ${G_{{\rm{gap}}}} = {\rm{10\; ns}}$; (c) the initial state is shown in Fig. 2(c), $D = 0{\rm{.004}}\;{\rm{c}}{{\rm{m}}^2}/{\rm{ms}}$, ${G_{{\rm{gap}}}} = {\rm{12\; ns}}$.

    图 7  图6(a)参数下第一层复合介质中$j = 150$这一行(a)与$i = 150$这一列(b)各细胞膜电位随时间的变化斑图

    Fig. 7.  Spatiotemporal pattern of the membrane potential of the grid points in the 150th row (a) and the 150th column (b) in the first layer composite medium for the parameters corresponding to Fig. 6(a).

    图 8  图6(b)参数下不同时刻的膜电位斑图 (a) $t = $$ {\rm{10\; ms}}$; (b) $t = {\rm{40\; ms}}$; (c) $t = {\rm{8}}0\;{\rm{ms}}$; (d) $t = {\rm{12}}0\;{\rm{ms}}$; (e) $t = $$ {\rm{18}}0\;{\rm{ms}}$; (f) $t = {\rm{22}}0\;{\rm{ms}}$; (g) $t = {\rm{32}}0\;{\rm{ms}}$; (h) $t = {\rm{38}}0\;{\rm{ms}}$; (i) $t = {\rm{44}}0\;{\rm{ms}}$

    Fig. 8.  Pattern of membrane potential at different time moments for the parameters corresponding to Fig. 6(b): (a) $t = $$ {\rm{10\; ms}}$; (b) $t = {\rm{40\; ms}}$; (c) $t = {\rm{8}}0\;{\rm{ms}}$; (d) $t = {\rm{12}}0\;{\rm{ms}}$; (e) $t = $$ {\rm{18}}0\;{\rm{ms}}$; (f) $t = {\rm{22}}0\;{\rm{ms}}$; (g) $t = {\rm{32}}0\;{\rm{ms}}$; (h) $t = {\rm{38}}0\;{\rm{ms}}$; (i) $t = {\rm{44}}0\;{\rm{ms}}$.

    图 9  图6(c)参数不同时刻的膜电位斑图 (a) $t = $$ {\rm{1}}0\;{\rm{ms}}$; (b) $t = {\rm{30\; ms}}$; (c) $t = {\rm{8}}0\;{\rm{ms}}$; (d) $t = {\rm{11}}0\;{\rm{ms}}$; (e) $t = $$ {\rm{14}}0\;{\rm{ms}}$; (f) $t = {\rm{17}}0\;{\rm{ms}}$; (g) $t = {\rm{26}}0\;{\rm{ms}}$; (h) $t = {\rm{36}}0\;{\rm{ms}}$; (i) $t = {\rm{48}}0\;{\rm{ms}}$

    Fig. 9.  Pattern of membrane potential at different time moments for the parameters corresponding to Fig. 6(c): (a) $t = $$ {\rm{1}}0\;{\rm{ms}}$; (b) $t = {\rm{30\; ms}}$; (c) $t = {\rm{8}}0\;{\rm{ms}}$; (d) $t = {\rm{11}}0\;{\rm{ms}}$; (e) $t = $$ {\rm{14}}0\;{\rm{ms}}$; (f) $t = {\rm{17}}0\;{\rm{ms}}$; (g) $t = {\rm{26}}0\;{\rm{ms}}$; (h) $t = {\rm{36}}0\;{\rm{ms}}$; (i) $t = {\rm{48}}0\;{\rm{ms}}$.

  • [1]

    Johnson R D, Camelliti P 2018 Int. J. Mol. Sci. 19 866Google Scholar

    [2]

    Camelliti P, Borg T K, Kohl P 2005 Cardiovasc. Res. 65 40Google Scholar

    [3]

    Greisas A, Zlochiver S 2016 Cardiovasc. Eng. Techn. 7 290Google Scholar

    [4]

    Sachse F B, Moreno A P, Abildskov J A 2008 Ann. Biomed. Eng. 36 41Google Scholar

    [5]

    Peters N S, Wit A L 1998 Circulation 97 1746Google Scholar

    [6]

    Jacquemet V, Henriquez C S 2008 Am. J. Physiol. Heart Circ. Physiol. 294 H2040Google Scholar

    [7]

    Xie Y F, Garfinkel A, Weiss J N, Qu Z L 2009 Am. J. Physiol. Heart Circ. Physiol. 297 H775Google Scholar

    [8]

    Nguyen T P, Xie Y F, Garfinkel A, Qu Z L, Weiss J N 2012 Cardiovasc. Res. 93 242Google Scholar

    [9]

    Brown T R, Krogh-Madsen T, Christini D J 2015 BioMed. Res. Int. 2015 465714Google Scholar

    [10]

    Chilton L, Giles W R, Smith G L 2007 J. Physi. 583 225Google Scholar

    [11]

    Louault C, Benamer N, Faivre J F, Potreau D, Bescond J 2008 BBA-Biomembranes 1778 2097Google Scholar

    [12]

    Vasquez C, Mohandas P, Louie K L, Benamer N, Bapat A C, Morley G E 2010 Circulation Research 107 1011Google Scholar

    [13]

    Baudino T A, McFadden A, Fix C, Hastings J, Price R, Borg T K 2008 Microsc. Microanal. 14 117Google Scholar

    [14]

    Shajahan T K, Nayak A R, Pandit R 2009 Plos One 4 e4738Google Scholar

    [15]

    Nayak A R, Shajahan T K, Panfilov A V, Pandit R 2013 Plos One 8 e72950Google Scholar

    [16]

    Kofron C M, Kim T Y, King M E, Xie A, Feng F, Park E, Qu Z, Choi B R, Mende U 2017 Am. J. Physiol. Heart Circ. Physiol. 313 H810Google Scholar

    [17]

    Kohl P, Camelliti P, Burton F L, Smith G L 2005 J. Electrocardiol 38 45Google Scholar

    [18]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501Google Scholar

  • [1] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [2] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌. 物理学报, 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [3] 王小艳, 汪芃, 李倩昀, 唐国宁. 用晚钠电流终止心脏中的螺旋波和时空混沌. 物理学报, 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [4] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁. 通过放慢钠通道开闭控制心脏中的螺旋波和时空混沌. 物理学报, 2016, 65(19): 198201. doi: 10.7498/aps.65.198201
    [5] 乔成功, 李伟恒, 唐国宁. 细胞外钾离子浓度延迟恢复对螺旋波的影响研究. 物理学报, 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [6] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [7] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [8] 颜森林. 外部光注入空间耦合半导体激光器高维混沌系统的增频与控制研究. 物理学报, 2012, 61(16): 160505. doi: 10.7498/aps.61.160505
    [9] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [10] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究. 物理学报, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [11] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [12] 祝金川, 李成仁, 齐笳羽, 任旭东, 岳喜爽. CO2激光器对相位共轭波时空混沌系统控制和同步的研究. 物理学报, 2011, 60(10): 104213. doi: 10.7498/aps.60.104213
    [13] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌. 物理学报, 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [14] 钟敏, 唐国宁. 局域反馈抑制心脏中的螺旋波和时空混沌. 物理学报, 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [15] 杨朝羽, 唐国宁. 基于蜂拥控制算法思想的时空混沌耦合反馈控制. 物理学报, 2009, 58(1): 143-149. doi: 10.7498/aps.58.143
    [16] 岳立娟, 沈 柯, 徐明奇. 非线性反馈法控制相位共轭波的光学时空混沌. 物理学报, 2007, 56(8): 4378-4382. doi: 10.7498/aps.56.4378
    [17] 罗润梓. 一个新混沌系统的脉冲控制与同步. 物理学报, 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [18] 蒋品群, 汪秉宏, 夏清华, 卜寿亮. 耦合映像格子中时空混沌的状态反馈控制. 物理学报, 2004, 53(10): 3280-3286. doi: 10.7498/aps.53.3280
    [19] 薛月菊, 冯汝鹏. 连续时间耦合系统中时空混沌的自适应模糊控制. 物理学报, 2001, 50(3): 440-444. doi: 10.7498/aps.50.440
    [20] 张旭, 沈柯. 耦合映象格子中时空混沌的控制. 物理学报, 2001, 50(4): 624-628. doi: 10.7498/aps.50.624
计量
  • 文章访问数:  4962
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-09
  • 修回日期:  2020-11-26
  • 上网日期:  2021-04-16
  • 刊出日期:  2021-05-05

/

返回文章
返回