搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外部光注入空间耦合半导体激光器高维混沌系统的增频与控制研究

颜森林

引用本文:
Citation:

外部光注入空间耦合半导体激光器高维混沌系统的增频与控制研究

颜森林

Frequency enhancement and control of chaos in two spatial coupled semiconductor lasers using external light injection

Yan Sen-Lin
PDF
导出引用
  • 提出外部光注入空间耦合半导体激光器系统,研究 外部光注入两激光器混沌振荡频率增强以及混沌控制等特点, 给出稳定频率失谐公式.研究表明,当单激光器注入时,注入激光器 呈现出三个混沌扩频区域;发现在强激光注入条件下,随着注入程度的 增加,注入激光器混沌振荡频率增强非常有效且可达到 3.5倍以上(尽管另一个激光器频率会缓慢下降); 随着注入光正频率失谐的增加,两激光器混沌振荡都能进一步增 强;发现混沌控制窗口,即在弱注入条件下两激光器可以被控制到单周 期、双周期、四周期、六周期等.当双激光器注入时,随着注入程度 的增加,两激光器混沌振荡频率 进一步增加, 且可达到3.5倍和2.65倍以上; 随着注入光正频率失谐增加, 两激光器混沌振荡频率增加.双激光器注 入控制混沌的一个窗口也被发现:即在强注入条件下两激光器可以被 控制到单周期、三周期、六周期等.最后详细给出了单激光注入系 统从单周期模式锁定到类周期再进入混沌增频的发展路径以及双 激光注入系统从混沌到类周期再进入单周期模式锁定的演化控制路径等.
    We present a novel system of oscillation frequency enhancement and control of chaos in two spatial coupled semiconductor lasers due to external light injection. We study the characteristics of frequency enhancement and control of chaos in the system and give a static frequency detuning formula. We find three regimes of chaotic enhancement when external light is injected into single laser, in which, strong light injection can result effectively in frequency enhancement in the injected laser, but the frequency weakens slowly in the other. And large detuning can result effectively in frequency enhancements in both lasers while the frequency can be enlarged 3.5 times more than the intrinsic frequency of the laser 1. Chaos-control region is found in low injection levels. In this region, lasers can be controlled to single -cycle, dual-cycle, cycle-4, cycle-6 and other quasi-cycles. When the dual-injection is present, strong light injection or large detuning can result effectively in frequency enhancements in both lasers while the frequency can be enlarged 3.5 or 2.65 times more than the intrinsic frequency of the laser 1 or 2. Chaos-control region is also found in large injection levels. In this region, both lasers can be controlled to single-cycle, cycle-3, cycle-6 and other quasi-cycles. We point out in detail a path from single-cycle to quasi-cycle to frequency enhancement of chaos when the single-injection is present. We find another reverse path from chaos to quasi-cycle to single-cycle when the dual-injection is present.
    [1]

    Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [2]

    van Wiggeren G D, Roy R 1998 Science 279 1198

    [3]

    Wu L, Zhu S Q 2003 Phys. Lett. A 308 157

    [4]

    Ramos R V, Souza R F 2001 Opt. Cummun. 22 90

    [5]

    Zhang F, Chu P L 2003 J. Lightwave Technol. 21 3334

    [6]

    Zhou Y, Wu L, Zhu S Q 2005 Chin. Phys. 14 2196

    [7]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰,潘炜,马冬,罗斌,张伟利,熊悦 2006 物理学报 55 5094]

    [8]

    Yan S L 2007 Chin. Phys. 16 3271

    [9]

    Yang L, Pan W, Luo B, Zhang W L, Jiang N, Zhou Z, Yang G B 2008 Chin. J. Lasers 35 992 (in Chinese) [杨磊, 潘炜, 罗斌, 张伟利, 江宁, 周志, 杨国标 2008 中国激光 35 992]

    [10]

    Argyris A, Syvridis D, Larger L, Lodi V A, Colet P, Fischer I, Ojalvo J G, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [11]

    Wu J G, Wu Z M, Lin X D, Zhang Y, Zhong D Z, Xia G Q 2005 Acta Phys. Sin. 54 4169 (in Chinese) [吴加贵,吴正茂,林晓东,张毅,钟东洲,夏光琼 2005 物理学报 54 4169]

    [12]

    Kusumoto K, Ohtsubo J 2002 Opt. Lett. 27 989

    [13]

    Lodi V A, Benedetti M, Merlo S, Norgia M, Provinzano B 2005 IEEE Photon. Technol. Lett. 17 1995

    [14]

    Paul J, Lee M W, Shore K A 2005 IEEE Photon. Technol. Lett. 17 920

    [15]

    Murakami A, Shore K A 2005 Phys. Rev. A 72 053810

    [16]

    Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [17]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [18]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M H, Zhou Z 2008 Opt. Lett. 33 237

    [19]

    Liu X M, Yang X, Lu F, Ng J, Zhou X, Lu C 2005 Opt. Express 13 142

    [20]

    Liu X M, Wang T, Shu C, Wang L R, Lin A, Lu K Q, Zhang T Y, Zhao W 2008 Laser Phys. 18 1357

    [21]

    Ott E, Grebogi, York J A 1990 Phys. Rev. Lett. 64 1196

    [22]

    Tong P Q, He J Y 1995 Acta Phys. Sin. 44 1551 (in Chinese) [童培庆, 何金勇 1995 物理学报 44 1551 ]

    [23]

    Yan S L 2006 Chin. J. Lasers (in Chinese) 33 1043 [颜森林 2006 中国激光 33 1043]

    [24]

    Li S H, Cai H X 2004 Acta Phys. Sin. 53 1687 (in Chinese) [李世华, 蔡海兴 2004 物理学报 53 1687 ]

    [25]

    Yan S L 2011 Commun. Theor. Phys. 55 481

    [26]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762

    [27]

    Wu J G, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759

  • [1]

    Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [2]

    van Wiggeren G D, Roy R 1998 Science 279 1198

    [3]

    Wu L, Zhu S Q 2003 Phys. Lett. A 308 157

    [4]

    Ramos R V, Souza R F 2001 Opt. Cummun. 22 90

    [5]

    Zhang F, Chu P L 2003 J. Lightwave Technol. 21 3334

    [6]

    Zhou Y, Wu L, Zhu S Q 2005 Chin. Phys. 14 2196

    [7]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese) [李孝峰,潘炜,马冬,罗斌,张伟利,熊悦 2006 物理学报 55 5094]

    [8]

    Yan S L 2007 Chin. Phys. 16 3271

    [9]

    Yang L, Pan W, Luo B, Zhang W L, Jiang N, Zhou Z, Yang G B 2008 Chin. J. Lasers 35 992 (in Chinese) [杨磊, 潘炜, 罗斌, 张伟利, 江宁, 周志, 杨国标 2008 中国激光 35 992]

    [10]

    Argyris A, Syvridis D, Larger L, Lodi V A, Colet P, Fischer I, Ojalvo J G, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [11]

    Wu J G, Wu Z M, Lin X D, Zhang Y, Zhong D Z, Xia G Q 2005 Acta Phys. Sin. 54 4169 (in Chinese) [吴加贵,吴正茂,林晓东,张毅,钟东洲,夏光琼 2005 物理学报 54 4169]

    [12]

    Kusumoto K, Ohtsubo J 2002 Opt. Lett. 27 989

    [13]

    Lodi V A, Benedetti M, Merlo S, Norgia M, Provinzano B 2005 IEEE Photon. Technol. Lett. 17 1995

    [14]

    Paul J, Lee M W, Shore K A 2005 IEEE Photon. Technol. Lett. 17 920

    [15]

    Murakami A, Shore K A 2005 Phys. Rev. A 72 053810

    [16]

    Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319

    [17]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [18]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M H, Zhou Z 2008 Opt. Lett. 33 237

    [19]

    Liu X M, Yang X, Lu F, Ng J, Zhou X, Lu C 2005 Opt. Express 13 142

    [20]

    Liu X M, Wang T, Shu C, Wang L R, Lin A, Lu K Q, Zhang T Y, Zhao W 2008 Laser Phys. 18 1357

    [21]

    Ott E, Grebogi, York J A 1990 Phys. Rev. Lett. 64 1196

    [22]

    Tong P Q, He J Y 1995 Acta Phys. Sin. 44 1551 (in Chinese) [童培庆, 何金勇 1995 物理学报 44 1551 ]

    [23]

    Yan S L 2006 Chin. J. Lasers (in Chinese) 33 1043 [颜森林 2006 中国激光 33 1043]

    [24]

    Li S H, Cai H X 2004 Acta Phys. Sin. 53 1687 (in Chinese) [李世华, 蔡海兴 2004 物理学报 53 1687 ]

    [25]

    Yan S L 2011 Commun. Theor. Phys. 55 481

    [26]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762

    [27]

    Wu J G, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759

  • [1] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制. 物理学报, 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [2] 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报, 2021, 70(8): 080501. doi: 10.7498/aps.70.20201251
    [3] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响. 物理学报, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [4] 颜森林. 半导体激光器混沌法拉第效应控制方法. 物理学报, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [5] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [6] 李冠林, 李春阳, 陈希有, 张效伟. 基于共振参数微扰法的SEPIC变换器的混沌控制. 物理学报, 2013, 62(21): 210505. doi: 10.7498/aps.62.210505
    [7] 张文明, 李雪, 刘爽, 李雅倩, 王博华. 一类非线性相对转动系统的混沌运动及多时滞反馈控制. 物理学报, 2013, 62(9): 094502. doi: 10.7498/aps.62.094502
    [8] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [9] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计. 物理学报, 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [10] 林 敏, 黄咏梅, 方利民. 耦合双稳系统的随机共振控制. 物理学报, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
    [11] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [12] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [13] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [14] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化. 物理学报, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [15] 罗润梓. 一个新混沌系统的脉冲控制与同步. 物理学报, 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [16] 林 敏, 毛谦敏, 郑永军, 李东升. 随机共振控制的频率匹配方法. 物理学报, 2007, 56(9): 5021-5025. doi: 10.7498/aps.56.5021
    [17] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [18] 颜森林. 量子阱激光器混沌相位控制同步以及编码研究. 物理学报, 2005, 54(3): 1098-1104. doi: 10.7498/aps.54.1098
    [19] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制. 物理学报, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [20] 陶朝海, 陆君安. 统一混沌系统的控制. 物理学报, 2003, 52(2): 281-284. doi: 10.7498/aps.52.281
计量
  • 文章访问数:  4330
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-19
  • 修回日期:  2012-01-29
  • 刊出日期:  2012-08-05

外部光注入空间耦合半导体激光器高维混沌系统的增频与控制研究

  • 1. 南京晓庄学院物理与电子工程学院, 南京 211171

摘要: 提出外部光注入空间耦合半导体激光器系统,研究 外部光注入两激光器混沌振荡频率增强以及混沌控制等特点, 给出稳定频率失谐公式.研究表明,当单激光器注入时,注入激光器 呈现出三个混沌扩频区域;发现在强激光注入条件下,随着注入程度的 增加,注入激光器混沌振荡频率增强非常有效且可达到 3.5倍以上(尽管另一个激光器频率会缓慢下降); 随着注入光正频率失谐的增加,两激光器混沌振荡都能进一步增 强;发现混沌控制窗口,即在弱注入条件下两激光器可以被控制到单周 期、双周期、四周期、六周期等.当双激光器注入时,随着注入程度 的增加,两激光器混沌振荡频率 进一步增加, 且可达到3.5倍和2.65倍以上; 随着注入光正频率失谐增加, 两激光器混沌振荡频率增加.双激光器注 入控制混沌的一个窗口也被发现:即在强注入条件下两激光器可以被 控制到单周期、三周期、六周期等.最后详细给出了单激光注入系 统从单周期模式锁定到类周期再进入混沌增频的发展路径以及双 激光注入系统从混沌到类周期再进入单周期模式锁定的演化控制路径等.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回