搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卡西米尔力

苗兵

引用本文:
Citation:

卡西米尔力

苗兵

Casimir force

Miao Bing
PDF
HTML
导出引用
  • 量子电动力学中的卡西米尔力是真空零点能的体现. 广义的卡西米尔力则依赖于涨落介质的类型广泛地出现于物理中, 包括量子, 临界, 戈德斯通模, 以及非平衡卡西米尔力. 长程关联的涨落介质和约束是产生卡西米尔力的两个条件. 本文通过回顾卡西米尔物理的发展, 讨论了不同类型的卡西米尔力, 几种正规化方法, 并对卡西米尔物理的进一步发展做了展望.
    Casimir force in quantum electrodynamics is the representation of zero point energy of vacuum. Depending on the type of fluctuation medium, generalized Casimir force covers a wide spectrum of topics in physics, such as, quantum, critical, Goldstone mode, and non-equilibrium Casimir force. In general, long range correlated fluctuations and constraints are two conditions for generating the Casimir force. In this paper, through a survey of the development of Casimir physics, we discuss several types of Casimir forces and several regularization methods. We end the paper with an outlook for the further development of Casimir physics in the future.
      通信作者: 苗兵, bmiao@ucas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 21774131, 21544007)资助的课题
      Corresponding author: Miao Bing, bmiao@ucas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21774131, 21544007)
    [1]

    Kardar M, Golestanian R 1999 Rev. Mod. Phys. 71 1233Google Scholar

    [2]

    Bordag M, Klimchitskaya G L, Mohideen U, Mostepanenko V M 2009 Advances in the Casimir Effect (New York: Oxford University Press)

    [3]

    Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793

    [4]

    Milton K A 2001 Casimir Effect: Physical Manifestations of Zero Point Energy (Singapore: World Scientific Publishing Co. Pte. Ltd.)

    [5]

    Dalvit D, Milonni P, Roberts D, Rosa F 2011 Casimir Physics (Heidelberg: Springer) pp1–3

    [6]

    Elizalde E, Odintsov S D, Romeo A, Bytsenko A A, Zerbini S 1994 Zeta Regularization Techniques with Applications (Singapore: World Scientific Publishing Co. Pte. Ltd.)

    [7]

    Fisher M E, de Gennes P G 1978 C. R. Seances Acad. Sci., Ser. B 287 207

    [8]

    Maciołek A, Dietrich S 2018 Rev. Mod. Phys. 90 045001Google Scholar

    [9]

    de Gennes P G 1979 Scaling Concepts in Polymer Physics (London: Cornell University Press) pp271–281

    [10]

    Obukhov S P, Semenov A N 2005 Phys. Rev. Lett. 95 038305Google Scholar

    [11]

    Semenov A N, Obukhov S P 2005 J. Phys.: Condens. Matter 17 S1747Google Scholar

    [12]

    Sparnaay M J 1958 Physica 24 751Google Scholar

    [13]

    Lamoreaux S K 1997 Phys. Rev. Lett. 78 5Google Scholar

    [14]

    Mohideen U, Roy A 1998 Phys. Rev. Lett. 81 4549Google Scholar

    [15]

    Serry F M, Walliser D, Maclay G J 1998 J. Appl. Phys. 84 2501Google Scholar

    [16]

    Buks E, Roukes M L 2001 Phys. Rev. B 63 033402Google Scholar

    [17]

    Chan H B, Aksyuk V A, Kleiman R N, Bishop D J, Capasso F 2001 Science 291 1941Google Scholar

    [18]

    Garcia R, Chan M H W 1999 Phys. Rev. Lett. 83 1187Google Scholar

    [19]

    Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C 2008 Nature 451 172Google Scholar

    [20]

    Lifshitz E M 1956 Sov. Phys. JETP 2 73

    [21]

    Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W, Podgornik R 2016 Rev. Mod. Phys. 88 045003Google Scholar

    [22]

    Schwinger J 1975 Lett. Math. Phys. 1 43Google Scholar

    [23]

    Aminov A, Kafri Y, Kardar M 2015 Phys. Rev. Lett. 114 230602Google Scholar

  • [1]

    Kardar M, Golestanian R 1999 Rev. Mod. Phys. 71 1233Google Scholar

    [2]

    Bordag M, Klimchitskaya G L, Mohideen U, Mostepanenko V M 2009 Advances in the Casimir Effect (New York: Oxford University Press)

    [3]

    Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793

    [4]

    Milton K A 2001 Casimir Effect: Physical Manifestations of Zero Point Energy (Singapore: World Scientific Publishing Co. Pte. Ltd.)

    [5]

    Dalvit D, Milonni P, Roberts D, Rosa F 2011 Casimir Physics (Heidelberg: Springer) pp1–3

    [6]

    Elizalde E, Odintsov S D, Romeo A, Bytsenko A A, Zerbini S 1994 Zeta Regularization Techniques with Applications (Singapore: World Scientific Publishing Co. Pte. Ltd.)

    [7]

    Fisher M E, de Gennes P G 1978 C. R. Seances Acad. Sci., Ser. B 287 207

    [8]

    Maciołek A, Dietrich S 2018 Rev. Mod. Phys. 90 045001Google Scholar

    [9]

    de Gennes P G 1979 Scaling Concepts in Polymer Physics (London: Cornell University Press) pp271–281

    [10]

    Obukhov S P, Semenov A N 2005 Phys. Rev. Lett. 95 038305Google Scholar

    [11]

    Semenov A N, Obukhov S P 2005 J. Phys.: Condens. Matter 17 S1747Google Scholar

    [12]

    Sparnaay M J 1958 Physica 24 751Google Scholar

    [13]

    Lamoreaux S K 1997 Phys. Rev. Lett. 78 5Google Scholar

    [14]

    Mohideen U, Roy A 1998 Phys. Rev. Lett. 81 4549Google Scholar

    [15]

    Serry F M, Walliser D, Maclay G J 1998 J. Appl. Phys. 84 2501Google Scholar

    [16]

    Buks E, Roukes M L 2001 Phys. Rev. B 63 033402Google Scholar

    [17]

    Chan H B, Aksyuk V A, Kleiman R N, Bishop D J, Capasso F 2001 Science 291 1941Google Scholar

    [18]

    Garcia R, Chan M H W 1999 Phys. Rev. Lett. 83 1187Google Scholar

    [19]

    Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C 2008 Nature 451 172Google Scholar

    [20]

    Lifshitz E M 1956 Sov. Phys. JETP 2 73

    [21]

    Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W, Podgornik R 2016 Rev. Mod. Phys. 88 045003Google Scholar

    [22]

    Schwinger J 1975 Lett. Math. Phys. 1 43Google Scholar

    [23]

    Aminov A, Kafri Y, Kardar M 2015 Phys. Rev. Lett. 114 230602Google Scholar

计量
  • 文章访问数:  12378
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 修回日期:  2020-04-09
  • 刊出日期:  2020-04-20

/

返回文章
返回