-
用夸克势模型研究结构相同而自旋和轨道量子数不同的介子之间质量劈裂是检验势模型有效性的重要手段之一. 在以往的用各种夸克势模型计算质量劈裂工作中, 当轻介子和重介子一起计算时, -很容易劈裂, 而c-J/等的劈裂都很 难达到实验值. 这里首先用正规化形状因子2/(q2+2), 对完整的动量空间中的Breit夸克势的第三项实施二次正规化, 除了第一项 库仑势和第七项常数项势, 对其余的项实施一次正规化, 然后用来计算 质量劈裂. 研究计算发现, 只有当屏蔽质量取为关于 折合质量r=mr mj/(mr+mj) 的三阶多项式时, 轻介子-和重介子c-J/, b-(1s), 还有c0-c1-c2 等的劈裂 精确达到实验值, 同时其他介子质量也都比以往得到较大的改善. 因此, 本文给出了一个有效的夸克势模型.The study on the mass splittings of the mesons with the same structure but different spin-and orbit-quantum numbers is one of the important methods for checking the efficiency of potential models. In previous calculations for quark potential models, the splitting between - is easily obtained while that of the c-J/ is however too small to meet the experimental results. In this paper, the third term of the complete Breit quark potential in the momentum space is regularized twice by applying the form factor 2/(q2+2), and the other terms except the first term of the Coulombic potential and the seventh term of the constant potential are regularized once. The mass splittings are calculated by using these values. Our results indicate that the mass splittings of light mesons -, heavy mesons c-J/, b-(1s), and c0-c1-c2 can meet the experimental results with high accuracy only when the screen mass is expanded to the third-order polynomial with respect to the meson reduced mass r=mr mj/(mr+mj), while the masses of other mesons are improved greatly. An efficient quark potential model is thus described in this paper.
-
Keywords:
- nonrelativistic quark potential model /
- meson bound states /
- regularization /
- mass splitting
[1] Lucha W, Schoberl F F, Gromes D 1991 Phys. Rep. 200 127
[2] Wong C Y, Swanson E S, Barnes T 2001 Phys. Rev. C 65 014903
[3] Godfrey S, Kokoski R 1991 Phys. Rev. D 43 1679
[4] Godfrey S, Isgur N 1985 Phys. Rev. D 32 189
[5] Godfrey S 1985 Phys. Rev. D 31 2375
[6] Capstick S, Isgur N 1986 Phys. Rev. D 34 2809
[7] Barnes T, Black N 1999 Phys. Rev. C 60 045202
[8] Chen J X, Su J C 2001 Phys. Rev. C 64 065201
[9] Wang H J, Yang H, Su J C 2003 Phys. Rev. C 68 055204
[10] Zhao G Q, Jing X G, Su J C 1998 Phys. Rev. D 58 117503
[11] Wong C Y, Swanson E S, Barnes T 2000 Phys. Rev. C 62 045201
[12] Crater H, Vanalstine P 2004 Phys. Rev. D 70 034026
[13] Wong C Y 2004 Phys. Rev. C 69 055202
[14] Jirimutu, Wang H J, Zhang W N, Wong C Y 2009 Int. J. Mod. Phys. E 18 729
[15] Jirimutu, Zhang W N 2009 Eur. Phys. J. A 42 63
[16] Rujula A D, Georgi H, Glashow S L 1975 Phys. Rev. D 12 147
[17] Ebert D, Faustov R N 2000 Phys. Rev. D 62 034014
[18] Chen Y Q, Kuang Y P 1992 Phys. Rev. D 46 1165
[19] Vijande J, Fernandez F, Valcarce A 2005 J. Phys. G 31 481
-
[1] Lucha W, Schoberl F F, Gromes D 1991 Phys. Rep. 200 127
[2] Wong C Y, Swanson E S, Barnes T 2001 Phys. Rev. C 65 014903
[3] Godfrey S, Kokoski R 1991 Phys. Rev. D 43 1679
[4] Godfrey S, Isgur N 1985 Phys. Rev. D 32 189
[5] Godfrey S 1985 Phys. Rev. D 31 2375
[6] Capstick S, Isgur N 1986 Phys. Rev. D 34 2809
[7] Barnes T, Black N 1999 Phys. Rev. C 60 045202
[8] Chen J X, Su J C 2001 Phys. Rev. C 64 065201
[9] Wang H J, Yang H, Su J C 2003 Phys. Rev. C 68 055204
[10] Zhao G Q, Jing X G, Su J C 1998 Phys. Rev. D 58 117503
[11] Wong C Y, Swanson E S, Barnes T 2000 Phys. Rev. C 62 045201
[12] Crater H, Vanalstine P 2004 Phys. Rev. D 70 034026
[13] Wong C Y 2004 Phys. Rev. C 69 055202
[14] Jirimutu, Wang H J, Zhang W N, Wong C Y 2009 Int. J. Mod. Phys. E 18 729
[15] Jirimutu, Zhang W N 2009 Eur. Phys. J. A 42 63
[16] Rujula A D, Georgi H, Glashow S L 1975 Phys. Rev. D 12 147
[17] Ebert D, Faustov R N 2000 Phys. Rev. D 62 034014
[18] Chen Y Q, Kuang Y P 1992 Phys. Rev. D 46 1165
[19] Vijande J, Fernandez F, Valcarce A 2005 J. Phys. G 31 481
计量
- 文章访问数: 6089
- PDF下载量: 122
- 被引次数: 0