搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论重离子碰撞中π介子椭圆流劈裂

刘鹤 初鹏程

引用本文:
Citation:

相对论重离子碰撞中π介子椭圆流劈裂

刘鹤, 初鹏程

Elliptic flow splitting of charged pions in relativistic heavy-ion collisions

Liu He, Chu Peng-Cheng
PDF
HTML
导出引用
  • 近年来, 美国布鲁克海文国家实验室的相对论重离子对撞机上正在进行着束流能量扫描实验, STAR国际合作组的研究人员发现$\pi$介子椭圆流劈裂与电荷不对称度存在着线性关系. 该现象被认为是手征磁波效应的重要信号. 本文基于拓展的多相输运模型, 利用三味Nambu-Jona-Lasinio (NJL)模型研究了构成$\pi^+$$\pi^-$介子不同的夸克同位旋平均场势, 为解释$\pi$介子椭圆流劈裂与电荷不对称度线性关系的实验现象提供了新思路, 可为同质异素体碰撞以及致密星体中夸克物质同位旋效应研究提供理论依据.
    Relativistic heavy-ion collisions are an important experimental way of studying the new state of matter as well as the phase diagram of the quantum chromodynamics (QCD) under extremely high temperatures and high densities. In recent years, the beam-energy scan program has been carried out on the relativistic heavy-ion collider at Brookhaven National Laboratory in USA, and the STAR collaboration at relativistic heavy ion collision (RHIC) has measured the difference in the elliptic flow $v_2$ between $\pi^-$ and $\pi^+$ on an event-by-event basis, and found a linear dependence on the charge asymmetry Ach of the collision system, which is considered as a possible signal of the chiral magnetic wave. Based on the extended multi-phase transport model (AMPT), this paper uses a 3 flavor Nambu-Jona-Lasinio (NJL) model to study the quark isospin Mean-field potential, which provides a new idea for explaining the experimental phenomenon of the linear relationship between the pion elliptic flow splitting $\Delta v_2=v_2(\pi^-)- $$ v_2(\pi^+)$ and charge asymmetry Ach. Our results show that isovector interaction can cause a splitting of the isospin asymmetric quark matter mean-field potential, manifesting as $d(\bar{u})$ quarks experiencing a mean-field potential greater than $u(\bar{d})$ quarks. Therefore, $d(\bar{u})$ quarks experience more repulsion than $u(\bar{d})$ quarks in collision processes, resulting in a small increase in the elliptic flow of the partial subflow $v_2(d)$ and $v_2(\bar{u})$, while $v_2(u)$ and $v_2(\bar{d})$ decrease slightly. In the hadronization process, the $\pi$ elliptic flow splitting occurs due to the split of $d$ and $u$ elliptic flows combined with the split of $\bar{u}$ and $\bar{d}$ elliptic flows. We also found a linear correlation between charge asymmetry and isospin asymmetry at mid-rapidity region from our transport model, and thus explained the experimental phenomenon of the linear relationship between the pion elliptic flow splitting $\Delta v_2$ and charge asymmetry Ach by using the isospin mean-field potential of quark matter. Further, isospin properties of quark matter also provide a theoretical basis for isobar collisions and the equation of state of compact star matter.
      通信作者: 刘鹤, liuhe@qut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12205158, 11975132)和山东省自然科学基金(批准号: ZR2021QA037, ZR2022JQ04, ZR2019YQ01)资助的课题
      Corresponding author: Liu He, liuhe@qut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12205158, 11975132) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2021QA037, ZR2022JQ04, ZR2019YQ01)
    [1]

    Adamczyk L, et al. (STAR Collaboration) 2013 Phys. Rev. Lett. 110 142301

    [2]

    Adamczyk L, et al. (STAR Collaboration) 2015 Phys. Rev. Lett. 114 252302

    [3]

    Burnier Y, Kharzeev D E, Liao J, Yee H U 2011 Phys. Rev. Lett. 107 052303Google Scholar

    [4]

    Hatta Y, Monnai A, Xiao B W 2015 Phys. Rev. D 92 114010Google Scholar

    [5]

    Hatta Y, Monnai A, Xiao B W 2016 Nucl. Phys. A 947 155Google Scholar

    [6]

    Adams J, Adler C, Aggarwal M M, et al. 2004 Phys. Rev. Lett. 92 052302Google Scholar

    [7]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Phys. Rev. C 72 014904Google Scholar

    [8]

    Adare A, Afanasiev S, Aidala C, et al. 2007 Phys. Rev. Lett. 98 162301Google Scholar

    [9]

    Afanasiev S, Aidala C, Ajitanand N N, et al. 2007 Phys. Rev. Lett. 99 052301Google Scholar

    [10]

    Xu J, Chen L W, Ko C M, Lin Z W 2012 Phys. Rev. C 85 041901Google Scholar

    [11]

    Xu J, Song T, Ko C M, Li F 2014 Phys. Rev. Lett. 112 012301Google Scholar

    [12]

    Ko C M, Song T, Li F, Greco V, Plumari S 2014 Nucl. Phys. A 928 234Google Scholar

    [13]

    Liu H, Wang F T, Sun K J, et al. 2019 Phys. Lett. B 798 135002Google Scholar

    [14]

    Lattimer J M, Prakash M 2007 Phys. Rep. 442 109Google Scholar

    [15]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 411 325Google Scholar

    [16]

    Li B A, Chen L W, Ko C M 2008 Phys. Rep. 464 113Google Scholar

    [17]

    Horowitz C J, Brown E F, Kim Y, et al. 2014 J. Phys. G 41 093001Google Scholar

    [18]

    Lin Z W, Ko C M, Li B A, Zhang B, Pal S 2005 Phys. Rev. C 72 064901Google Scholar

    [19]

    Wong C Y 1982 Phys. Rev. C 25 1460Google Scholar

    [20]

    Bertsch G F, Gupta S D 1988 Phys. Rep. 160 189Google Scholar

    [21]

    Liu H, Xu J, Chen L W, et al. 2016 Phys. Rev. D 94 065032Google Scholar

    [22]

    Batovic N, Hatsuda T, Weise W 2013 Phys. Lett. B 719 131Google Scholar

    [23]

    Karsch F 2002 Lect. Notes. Phys. 583 209Google Scholar

    [24]

    Gupta S, Luo X, Mohanty B, et al. 2011 Science 332 1525Google Scholar

    [25]

    Battacharya T, Buchoff M I, Christ N H, et al. 2014 Phys. Rev. Lett. 113 082001Google Scholar

    [26]

    Xu H j, Wang X, Li H, et al. 2018 Phys. Rev. Lett. 121 022301Google Scholar

    [27]

    Li H L, Xu H J, Zhou Y, et al. 2020 Phys. Rev. Lett. 125 222301Google Scholar

    [28]

    Koch V, Schlichting S, Skokov V, et al. 2017 Chin. Phys. C 41 072001Google Scholar

    [29]

    Liang G R, Liao J, Lin S, Yan L, Li M 2020 Chin. Phys. C 44 094103Google Scholar

  • 图 1  NJL模型中不同味正反夸克的平均场势随夸克物质粒子数密度的变化关系

    Fig. 1.  Mean-field potentials of quarks and antiquarks of different flavors from NJL model as a function of net quark density.

    图 2  在质心系能量为$ \sqrt{s_{NN}} =200 $ GeV, 碰撞中心度为30%—40%的Au+Au碰撞中, 不同同位旋不对称度区间的体系中心区域各部分子密度随时间的演化 (a) $ \delta = 0.1 $; (b) $ \delta = 0.2 $; (c) $ \delta = 0.3 $

    Fig. 2.  Central number densities of partons as a function of time in centrality 30%—40% Au + Au collisions at collision energies $ \sqrt{s_{NN}} =200 $ GeV for the cases of including different isospin asymmetries: (a) $ \delta = 0.1 $; (b) $ \delta = 0.2 $; (c) $ \delta = 0.3 $.

    图 3  基于拓展AMPT模型, 末态强子电荷不对称度分布(a)和部分子同位旋不对称度$ \delta $ (b)与电荷不对称度Ach依赖关系

    Fig. 3.  Distribution of finalhadron charge asymmetry (a) and isospin asymmetry $ \delta $ (b) as a function of charge asymmetry Ach from the extended AMPT model.

    图 4  在质心不变碰撞能量200 GeV, 中心度30%—40%的Au+Au碰撞中, 末态部分子椭圆流($ v_2 $)与末态强子电荷不对称度的依赖关系

    Fig. 4.  Elliptic flow ($ v_2 $) of partons as a function of final hadron charge asymmetry for 30%–40% central Au+Au collisions at 200 GeV.

    图 5  在质心不变碰撞能量为200 GeV, 中心度30%—40%的Au+Au碰撞中 (a) $ \pi $介子椭圆流与末态强子电荷不对称度的依赖关系; (b) $ \pi $介子椭圆流劈裂与末态强子电荷不对称度的依赖关系

    Fig. 5.  For 30%–40% central Au+Au collisions at 200 GeV: (a) Pion $ v_2 $ as a function of final hadron charge asymmetry; (b) $ v_2 $ difference between $ \pi^+ $$ \pi^- $ as a function of final hadron charge asymmetry.

  • [1]

    Adamczyk L, et al. (STAR Collaboration) 2013 Phys. Rev. Lett. 110 142301

    [2]

    Adamczyk L, et al. (STAR Collaboration) 2015 Phys. Rev. Lett. 114 252302

    [3]

    Burnier Y, Kharzeev D E, Liao J, Yee H U 2011 Phys. Rev. Lett. 107 052303Google Scholar

    [4]

    Hatta Y, Monnai A, Xiao B W 2015 Phys. Rev. D 92 114010Google Scholar

    [5]

    Hatta Y, Monnai A, Xiao B W 2016 Nucl. Phys. A 947 155Google Scholar

    [6]

    Adams J, Adler C, Aggarwal M M, et al. 2004 Phys. Rev. Lett. 92 052302Google Scholar

    [7]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Phys. Rev. C 72 014904Google Scholar

    [8]

    Adare A, Afanasiev S, Aidala C, et al. 2007 Phys. Rev. Lett. 98 162301Google Scholar

    [9]

    Afanasiev S, Aidala C, Ajitanand N N, et al. 2007 Phys. Rev. Lett. 99 052301Google Scholar

    [10]

    Xu J, Chen L W, Ko C M, Lin Z W 2012 Phys. Rev. C 85 041901Google Scholar

    [11]

    Xu J, Song T, Ko C M, Li F 2014 Phys. Rev. Lett. 112 012301Google Scholar

    [12]

    Ko C M, Song T, Li F, Greco V, Plumari S 2014 Nucl. Phys. A 928 234Google Scholar

    [13]

    Liu H, Wang F T, Sun K J, et al. 2019 Phys. Lett. B 798 135002Google Scholar

    [14]

    Lattimer J M, Prakash M 2007 Phys. Rep. 442 109Google Scholar

    [15]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 411 325Google Scholar

    [16]

    Li B A, Chen L W, Ko C M 2008 Phys. Rep. 464 113Google Scholar

    [17]

    Horowitz C J, Brown E F, Kim Y, et al. 2014 J. Phys. G 41 093001Google Scholar

    [18]

    Lin Z W, Ko C M, Li B A, Zhang B, Pal S 2005 Phys. Rev. C 72 064901Google Scholar

    [19]

    Wong C Y 1982 Phys. Rev. C 25 1460Google Scholar

    [20]

    Bertsch G F, Gupta S D 1988 Phys. Rep. 160 189Google Scholar

    [21]

    Liu H, Xu J, Chen L W, et al. 2016 Phys. Rev. D 94 065032Google Scholar

    [22]

    Batovic N, Hatsuda T, Weise W 2013 Phys. Lett. B 719 131Google Scholar

    [23]

    Karsch F 2002 Lect. Notes. Phys. 583 209Google Scholar

    [24]

    Gupta S, Luo X, Mohanty B, et al. 2011 Science 332 1525Google Scholar

    [25]

    Battacharya T, Buchoff M I, Christ N H, et al. 2014 Phys. Rev. Lett. 113 082001Google Scholar

    [26]

    Xu H j, Wang X, Li H, et al. 2018 Phys. Rev. Lett. 121 022301Google Scholar

    [27]

    Li H L, Xu H J, Zhou Y, et al. 2020 Phys. Rev. Lett. 125 222301Google Scholar

    [28]

    Koch V, Schlichting S, Skokov V, et al. 2017 Chin. Phys. C 41 072001Google Scholar

    [29]

    Liang G R, Liao J, Lin S, Yan L, Li M 2020 Chin. Phys. C 44 094103Google Scholar

计量
  • 文章访问数:  2272
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-25
  • 修回日期:  2023-04-28
  • 上网日期:  2023-05-04
  • 刊出日期:  2023-07-05

/

返回文章
返回