搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论重离子碰撞中光子-光子相互作用的碰撞参数依赖性

杨帅 唐泽波 杨驰 查王妹

引用本文:
Citation:

相对论重离子碰撞中光子-光子相互作用的碰撞参数依赖性

杨帅, 唐泽波, 杨驰, 查王妹

Impact parameter dependence of photon-photon interactions in relativistic heavy-ion collisions

Yang Shuai, Tang Ze-Bo, Yang Chi, Zha Wang-Mei
PDF
HTML
导出引用
  • 在相对论重离子碰撞中, 接近光速的重离子产生的超强电磁场, 由于洛伦兹收缩效应可等效为线性极化的准实光子, 进而诱发光子-光子相互作用产生正负轻子对. 相对论重离子对撞机RHIC和大型强子对撞机LHC上的国际合作实验在非超周边重离子碰撞中观测到相干光致产生过程, 发现正负轻子对的横动量分布相比于其在超周边碰撞发生显著的展宽, 为研究解禁闭物质——夸克胶子等离子体的电磁性质提供了新途径. 本文主要回顾相对论重离子碰撞中光子-光子相互作用对碰撞参数依赖的实验研究, 并讨论其在侦测夸克胶子等离子体电磁性质方面的重要意义.
    The Lorentz-boosted electromagnetic fields surrounding relativistic heavy ions with large charges can be treated as a flux of linearly polarized quasireal photons, which can interact via the photon-photon scattering to produce lepton antilepton pairs. Those photon-photon interactions can happen even in heavy-ion collisions with hadronic overlap, making an opportunity to probe the electromagnetic properties of the produced deconfined quark-gluon plasma. In this paper, we review the recent experimental progress of the impact parameter dependent photon-photon interactions in heavy-ion collisions, and discuss their essential role in probing the possible electromagnetic properties of quark-gluon plasma produced in hadronic heavy-ion collisions.
      通信作者: 杨帅, syang@scnu.edu.cn ; 唐泽波, zbtang@ustc.edu.cn ; 杨驰, chiyang@sdu.edu.cn ; 查王妹, first@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11890713, 12005220, 12075139, 12175223, 12275091)和广东省基础与应用基础研究基金自然科学基金(批准号: 2020B0301030008, 2023A1515010416)资助的课题.
      Corresponding author: Yang Shuai, syang@scnu.edu.cn ; Tang Ze-Bo, zbtang@ustc.edu.cn ; Yang Chi, chiyang@sdu.edu.cn ; Zha Wang-Mei, first@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11890713, 12005220, 12075139, 12175223, 12275091) and the Major Project of Basic and Applied Basic Research of Guangdong Province, China (Grant Nos. 2020B0301030008, 2023A1515010416).
    [1]

    Fermi E 1924 Z. Phys. 29 315Google Scholar

    [2]

    Williams E J 1934 Phys. Rev. 45 729Google Scholar

    [3]

    Weizsacker C F von 1934 Z. Phys. 88 612Google Scholar

    [4]

    Bertulani C A, Baur G 1988 Phys. Rep. 163 299Google Scholar

    [5]

    Baur G, Hencken K, Trautmann D, Sadovsky S, Kharlov Y 2002 Phys. Rep. 364 359Google Scholar

    [6]

    Bertulani C A, Klein S R, Nystrand J 2005 Annu. Rev. Nucl. Part. Sci. 55 271Google Scholar

    [7]

    Baltz A J, Baur G, d’Enterria D, Frankfurt L, Gelis F, Guzey V, Hencken K, Kharlov Y, Klasen M, Klein S R, Nikulin V, Nystrand J, Pshenichnov I A, Sadovsky S, Scapparone E, Seger J, Strikman M, Tverskoy M, Vogt R, White S N, Wiedemann U A, Yepes P, Zhalov M 2008 Phys. Rep. 458 1Google Scholar

    [8]

    Klein S R, Steinberg P 2020 Annu. Rev. Nucl. Part. Sci. 70 323Google Scholar

    [9]

    Baur G, Hencken K, Trautmann D 2007 Phys. Rep. 453 1Google Scholar

    [10]

    STAR Collaboration 2004 Phys. Rev. C 70 031902Google Scholar

    [11]

    STAR Collaboration 2021 Phys. Rev. Lett. 127 052302Google Scholar

    [12]

    PHENIX Collaboration 2009 Phys. Lett. B 679 321Google Scholar

    [13]

    ALICE Collaboration 2013 Eur. Phys. J. C 73 2617Google Scholar

    [14]

    CMS Collaboration 2019 Phys. Lett. B 797 134826Google Scholar

    [15]

    ATLAS Collaboration 2017 Nat. Phys. 13 852Google Scholar

    [16]

    ATLAS Collaboration 2019 Phys. Rev. Lett. 123 052001Google Scholar

    [17]

    Bruce R, d'Enterria D, d’Roeck A, Drewes M, Farrar G R, Giammanco A, Gould O, Hajer J, Harland-Lang L, Heisig J, Jowett J M, Kabana S, Krintiras G K, Korsmeier M, Lucente M, Milhano G, Mukherjee S, Niedziela J, Okorokov V A, Rajantie A, Schaumann M 2020 J. Phys. G 47 060501Google Scholar

    [18]

    STAR Collaboration 2002 Phys. Rev. Lett. 89 272302Google Scholar

    [19]

    CMS Collaboration 2019 Eur. Phys. J. C 79 277Google Scholar

    [20]

    CMS Collaboration 2023 arXiv: 2303.16984 [nucl-ex

    [21]

    CMS Collaboration 2023 Phys. Rev. Lett. 131 051901Google Scholar

    [22]

    STAR Collaboration 2017 Phys. Rev. C 96 054904Google Scholar

    [23]

    STAR Collaboration 2023 Sci. Adv. 9 eabq3903Google Scholar

    [24]

    ALICE Collaboration 2013 Phys. Lett. B 718 1273Google Scholar

    [25]

    ALICE Collaboration 2014 Phys. Rev. Lett. 113 232504Google Scholar

    [26]

    ALICE Collaboration 2019 Phys. Lett. B 798 134926Google Scholar

    [27]

    ALICE Collaboration 2021 Phys. Lett. B 817 136280Google Scholar

    [28]

    ALICE Collaboration 2023 arXiv: 2305.06169 [nucl-ex

    [29]

    CMS Collaboration 2017 Phys. Lett. B 772 489Google Scholar

    [30]

    ALICE Collaboration 2016 Phys. Rev. Lett. 116 222301Google Scholar

    [31]

    ATLAS Collaboration 2018 Phys. Rev. Lett. 121 212301Google Scholar

    [32]

    ATLAS Collaboration 2023 Phys. Rev. C 107 054907Google Scholar

    [33]

    STAR Collaboration 2018 Phys. Rev. Lett. 121 132301Google Scholar

    [34]

    STAR Collaboration 2019 Phys. Rev. Lett. 123 132302Google Scholar

    [35]

    CMS Collaboration 2021 Phys. Rev. Lett. 127 122001Google Scholar

    [36]

    ATLAS Collaboration 2021 Phys. Rev. C 104 024906Google Scholar

    [37]

    Zha W, Brandenburg J D, Tang Z, Xu Z 2020 Phys. Lett. B 800 135089Google Scholar

    [38]

    Brandenburg J D, Zha W, Xu Z 2021 Eur. Phys. J. A 57 299Google Scholar

    [39]

    Li C, Zhou J, Zhou Y 2019 Phys. Lett. B 795 576Google Scholar

    [40]

    Li C, Zhou J, Zhou Y 2020 Phys. Rev. D 101 034015Google Scholar

    [41]

    Klein S, Mueller A H, Xiao B, Yuan F 2020 Phys. Rev. D 102 094013Google Scholar

    [42]

    Xiao B, Yuan F, Zhou J 2020 Phys. Rev. Lett. 125 232301Google Scholar

    [43]

    Wang R, Pu S, Wang Q 2021 Phys. Rev. D 104 056011Google Scholar

    [44]

    Wang R, Lin S, Pu S, Zhang Y, Wang Q 2022 Phys. Rev. D 106 034025Google Scholar

    [45]

    浦实, 肖博文, 周剑, 周雅瑾 2023 物理学报 72 072503Google Scholar

    PU S, Xiao B, Zhou J, Zhou Y 2023 Acta Phys. Sin. 72 072503Google Scholar

    [46]

    Rapp R 2013 Adv. High Energy Phys. 2013 148253

    [47]

    Zha W, Ruan L, Tang Z, Xu Z, Yang S 2018 Phys. Lett. B 781 182Google Scholar

    [48]

    Klein S R 2018 Phys. Rev. C 97 054903Google Scholar

    [49]

    Berman B L, Fultz S C 1975 Rev. Mod. Phys. 47 713Google Scholar

    [50]

    Klein S R, Nystrand J, Seger J, Gorbunov Y, Butterworth J 2017 Comput. Phys. Commun. 212 258Google Scholar

    [51]

    Brandenburg J D, Li W, Ruan L, Tang Z, Xu Z, Yang S, Zha W 2020 arXiv: 2006.07365 [hep-ph

  • 图 1  超周边重离子碰撞中光子-光子相互作用(a)和光子-原子核相互作用(b)示意图

    Fig. 1.  Schematic plot of photon-photon (a) and photon-nuclear (b) interactions in ultra-peripheral heavy-ion collisions.

    图 2  60%—80%金核-金核和铀核-铀核碰撞中心度事例中不同质量区间正负电子对的横动量分布[33]

    Fig. 2.  The $ {\rm{e}}^+{\rm{e}}^- $ pair $ p_{\rm{T}} $ distributions for different mass regions in 60%–80% Au + Au and U + U collisions compared to cocktails[33].

    图 3  60%—80% (a) 和40%—60% (b)金核-金核和铀核-铀核碰撞中心度事例中低横动量($ p_{\rm{T}} < $ 0.15 GeV/c)正负电子对的不变质量增强谱; (c) 金核-金核和铀核-铀核碰撞中不同质量区间增强产额对碰撞中心度的依赖[33]

    Fig. 3.  The low-$ p_{\rm{T}} $ ($ p_{\rm{T}} < $0.15 GeV/c) $ {\rm{e}}^+{\rm{e}}^- $ excess mass spectra in 60%–80% (a) and 40%–60% (b) Au + Au and U + U collisions; (c) centrality dependence of integrated excess yields in three different mass regions in Au + Au and U + U collisions[33].

    图 4  铅核-铅核碰撞中不同中心度下光子-光子相互作用产生正负缪子对的α分布, 每个分布在其测量范围内进行归一处理[31]

    Fig. 4.  The centrality dependence of α distributions from $ \gamma\gamma\rightarrow{\text{μ}}^+{\text{μ}}^- $ in Pb + Pb collisions. The α distributions are normalized to unity over their measured ranges[31].

    图 5  gEPA和QED方法计算的5.02 TeV铅核-铅核碰撞中不同中心度下源自光子-光子相互作用的正负缪子对的α分布[37]

    Fig. 5.  The α distributions calculated by gEPA and QED approaches for $ \gamma\gamma\rightarrow{\text{μ}}^+{\text{μ}}^- $ in Pb + Pb collisions at $ \sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV for different centrality classes[37].

    图 6  $ 0 {\rm{n}}0 {\rm{n}} $, $ 0 {\rm{n}}Y{\rm{n}} $, $ Y{\rm{n}}Y{\rm{n }}$, (其中$ Y \geqslant 1 $)对应的碰撞参数范围[8]

    Fig. 6.  The impact parameter dependence of the $ 0 {\rm{n}}0 {\rm{n}} $, $ Y{\rm{n}}0{\rm{ n }}$, $ Y{\rm{n}}Y{\rm{n }}$ ($ Y \geqslant 1 $) neutron emission scenarios from the STARlight model[8]

    图 7  位于CMS两边零度角量能器的能量谱关联(a)和位于负快度方向零度角量能器的能量谱分布(b)[35]

    Fig. 7.  The left panel shows the correlation between energy distributions of the Minus and Plus ZDC detectors, while the right panel shows a multi-Gaussian function fit to the Minus ZDC energy distribution[35].

    图 8  5.02 TeV铅核-铅核超周边碰撞中不同前向中子多重数下正负缪子对的α分布[35]

    Fig. 8.  Neutron multiplicity dependence of α distributions from $ \gamma\gamma\rightarrow{\text{μ}}^+{\text{μ}}^- $ in ultraperipheral Pb-Pb collisions at $ \sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The α distributions are normalized to unity integral over their measured ranges[35].

    图 9  5.02 TeV铅核-铅核超周边碰撞中正负缪子对的$ \langle \alpha^\text{core} \rangle $对前向中子多重数的依赖[35]

    Fig. 9.  Neutron multiplicity dependence of $ \langle \alpha^\text{core} \rangle $ of $ {\text{μ}}^+{\text{μ}}^- $ in ultra-peripheral Pb + Pb collisions[35].

    图 10  5.02 TeV铅核-铅核超周边碰撞中正负缪子对的$ \langle m_{{\text{μ}}{\text{μ}}} \rangle $对前向中子多重数的依赖[35]

    Fig. 10.  Neutron multiplicity dependence of $ \langle m_{{\text{μ}}{\text{μ}}} \rangle $ of ${\text{μ}}^+{\text{μ}}^- $ in ultra-peripheral Pb + Pb collisions[35].

    图 11  3个具有不对称中子数的前向中子多重数事例中光致产生的正负缪子对的α分布[35]

    Fig. 11.  Acoplanarity distributions of $ \gamma\gamma \rightarrow {\text{μ}}^+{\text{μ}}^- $ events for three different neutron multiplicity classes with asymmetric neutron numbers[35].

    图 12  预计STAR于2023至2025年在200 GeV金核-金核偏心和超周边碰撞中测量$ \gamma\gamma \rightarrow {\rm{e}}^+{\rm{e}}^- $物理过程可达到的精度[38]

    Fig. 12.  Projection for measurements of the $ \gamma\gamma \rightarrow {\rm{e}}^+{\rm{e}}^- $ process in peripheral and ultra-peripheral Au + Au collisions at $ \sqrt{s_{\mathrm{NN}}} = $ 200 GeV[38].

  • [1]

    Fermi E 1924 Z. Phys. 29 315Google Scholar

    [2]

    Williams E J 1934 Phys. Rev. 45 729Google Scholar

    [3]

    Weizsacker C F von 1934 Z. Phys. 88 612Google Scholar

    [4]

    Bertulani C A, Baur G 1988 Phys. Rep. 163 299Google Scholar

    [5]

    Baur G, Hencken K, Trautmann D, Sadovsky S, Kharlov Y 2002 Phys. Rep. 364 359Google Scholar

    [6]

    Bertulani C A, Klein S R, Nystrand J 2005 Annu. Rev. Nucl. Part. Sci. 55 271Google Scholar

    [7]

    Baltz A J, Baur G, d’Enterria D, Frankfurt L, Gelis F, Guzey V, Hencken K, Kharlov Y, Klasen M, Klein S R, Nikulin V, Nystrand J, Pshenichnov I A, Sadovsky S, Scapparone E, Seger J, Strikman M, Tverskoy M, Vogt R, White S N, Wiedemann U A, Yepes P, Zhalov M 2008 Phys. Rep. 458 1Google Scholar

    [8]

    Klein S R, Steinberg P 2020 Annu. Rev. Nucl. Part. Sci. 70 323Google Scholar

    [9]

    Baur G, Hencken K, Trautmann D 2007 Phys. Rep. 453 1Google Scholar

    [10]

    STAR Collaboration 2004 Phys. Rev. C 70 031902Google Scholar

    [11]

    STAR Collaboration 2021 Phys. Rev. Lett. 127 052302Google Scholar

    [12]

    PHENIX Collaboration 2009 Phys. Lett. B 679 321Google Scholar

    [13]

    ALICE Collaboration 2013 Eur. Phys. J. C 73 2617Google Scholar

    [14]

    CMS Collaboration 2019 Phys. Lett. B 797 134826Google Scholar

    [15]

    ATLAS Collaboration 2017 Nat. Phys. 13 852Google Scholar

    [16]

    ATLAS Collaboration 2019 Phys. Rev. Lett. 123 052001Google Scholar

    [17]

    Bruce R, d'Enterria D, d’Roeck A, Drewes M, Farrar G R, Giammanco A, Gould O, Hajer J, Harland-Lang L, Heisig J, Jowett J M, Kabana S, Krintiras G K, Korsmeier M, Lucente M, Milhano G, Mukherjee S, Niedziela J, Okorokov V A, Rajantie A, Schaumann M 2020 J. Phys. G 47 060501Google Scholar

    [18]

    STAR Collaboration 2002 Phys. Rev. Lett. 89 272302Google Scholar

    [19]

    CMS Collaboration 2019 Eur. Phys. J. C 79 277Google Scholar

    [20]

    CMS Collaboration 2023 arXiv: 2303.16984 [nucl-ex

    [21]

    CMS Collaboration 2023 Phys. Rev. Lett. 131 051901Google Scholar

    [22]

    STAR Collaboration 2017 Phys. Rev. C 96 054904Google Scholar

    [23]

    STAR Collaboration 2023 Sci. Adv. 9 eabq3903Google Scholar

    [24]

    ALICE Collaboration 2013 Phys. Lett. B 718 1273Google Scholar

    [25]

    ALICE Collaboration 2014 Phys. Rev. Lett. 113 232504Google Scholar

    [26]

    ALICE Collaboration 2019 Phys. Lett. B 798 134926Google Scholar

    [27]

    ALICE Collaboration 2021 Phys. Lett. B 817 136280Google Scholar

    [28]

    ALICE Collaboration 2023 arXiv: 2305.06169 [nucl-ex

    [29]

    CMS Collaboration 2017 Phys. Lett. B 772 489Google Scholar

    [30]

    ALICE Collaboration 2016 Phys. Rev. Lett. 116 222301Google Scholar

    [31]

    ATLAS Collaboration 2018 Phys. Rev. Lett. 121 212301Google Scholar

    [32]

    ATLAS Collaboration 2023 Phys. Rev. C 107 054907Google Scholar

    [33]

    STAR Collaboration 2018 Phys. Rev. Lett. 121 132301Google Scholar

    [34]

    STAR Collaboration 2019 Phys. Rev. Lett. 123 132302Google Scholar

    [35]

    CMS Collaboration 2021 Phys. Rev. Lett. 127 122001Google Scholar

    [36]

    ATLAS Collaboration 2021 Phys. Rev. C 104 024906Google Scholar

    [37]

    Zha W, Brandenburg J D, Tang Z, Xu Z 2020 Phys. Lett. B 800 135089Google Scholar

    [38]

    Brandenburg J D, Zha W, Xu Z 2021 Eur. Phys. J. A 57 299Google Scholar

    [39]

    Li C, Zhou J, Zhou Y 2019 Phys. Lett. B 795 576Google Scholar

    [40]

    Li C, Zhou J, Zhou Y 2020 Phys. Rev. D 101 034015Google Scholar

    [41]

    Klein S, Mueller A H, Xiao B, Yuan F 2020 Phys. Rev. D 102 094013Google Scholar

    [42]

    Xiao B, Yuan F, Zhou J 2020 Phys. Rev. Lett. 125 232301Google Scholar

    [43]

    Wang R, Pu S, Wang Q 2021 Phys. Rev. D 104 056011Google Scholar

    [44]

    Wang R, Lin S, Pu S, Zhang Y, Wang Q 2022 Phys. Rev. D 106 034025Google Scholar

    [45]

    浦实, 肖博文, 周剑, 周雅瑾 2023 物理学报 72 072503Google Scholar

    PU S, Xiao B, Zhou J, Zhou Y 2023 Acta Phys. Sin. 72 072503Google Scholar

    [46]

    Rapp R 2013 Adv. High Energy Phys. 2013 148253

    [47]

    Zha W, Ruan L, Tang Z, Xu Z, Yang S 2018 Phys. Lett. B 781 182Google Scholar

    [48]

    Klein S R 2018 Phys. Rev. C 97 054903Google Scholar

    [49]

    Berman B L, Fultz S C 1975 Rev. Mod. Phys. 47 713Google Scholar

    [50]

    Klein S R, Nystrand J, Seger J, Gorbunov Y, Butterworth J 2017 Comput. Phys. Commun. 212 258Google Scholar

    [51]

    Brandenburg J D, Li W, Ruan L, Tang Z, Xu Z, Yang S, Zha W 2020 arXiv: 2006.07365 [hep-ph

  • [1] 寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强. 相对论重离子碰撞中的手征效应实验研究. 物理学报, 2023, 72(11): 112504. doi: 10.7498/aps.72.20230109
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制. 物理学报, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [4] 刘鹤, 初鹏程. 相对论重离子碰撞中π介子椭圆流劈裂. 物理学报, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [5] 张善良, 邢宏喜, 王恩科. 相对论重离子碰撞中的喷注淬火效应. 物理学报, 2023, 72(20): 200304. doi: 10.7498/aps.72.20230993
    [6] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [7] 江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威. RHIC能区Au+Au 碰撞中带电粒子直接流与超子整体极化的计算与分析. 物理学报, 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [8] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像. 物理学报, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [9] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] 管娜娜. 胶子非弹性散射过程对夸克胶子等离子体中双轻子产生的影响. 物理学报, 2016, 65(14): 142501. doi: 10.7498/aps.65.142501
    [11] 陈小凡. 相对论重离子碰撞中部分相干源的相干因子. 物理学报, 2012, 61(9): 092501. doi: 10.7498/aps.61.092501
    [12] 朱斌, 谷渝秋, 王玉晓, 刘红杰, 吴玉迟, 王磊, 王剑, 温贤伦, 焦春晔, 滕建, 何颖玲. 超短超强激光与稀薄等离子体相互作用中后孤立子的观测. 物理学报, 2009, 58(2): 1100-1104. doi: 10.7498/aps.58.1100
    [13] 李百文, 郑春阳, 宋 敏, 刘占军. 高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速. 物理学报, 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [14] 张 翼, 李玉同, 张 杰, 陈正林, R. Kodama. 超强激光与等离子体相互作用产生中子的计算. 物理学报, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [15] 贺泽君, 龙家丽, 马国亮, 马余刚, 张家驹, 刘 波. 化学非平衡夸克-胶子物质中等质量双轻子的产生. 物理学报, 2003, 52(11): 2831-2835. doi: 10.7498/aps.52.2831
    [16] 贺泽君, 周文杰, 蒋维洲, 张家驹, 刘波. 膨胀的热夸克胶子物质的中等质量双轻子的增强. 物理学报, 2002, 51(6): 1312-1316. doi: 10.7498/aps.51.1312
    [17] 贺泽君, 蒋维渊, 朱志远, 刘 波. 夸克-胶子等离子体在相对论性核-核碰撞中形成的一种信号. 物理学报, 2000, 49(5): 911-914. doi: 10.7498/aps.49.911
    [18] 刘建敏, 蒋勇, 丁卫星, 胡根泽, 俞昌旋. 微波与非均匀等离子体相互作用过程中坑子的形成与谐波发射. 物理学报, 1992, 41(10): 1613-1619. doi: 10.7498/aps.41.1613
    [19] 戴文龙, 贺贤土, 霍裕平, 刘之景. 等离子体中Langmuir波、横波和离子声波相互作用过程的孤立子行为. 物理学报, 1987, 36(1): 67-73. doi: 10.7498/aps.36.67
    [20] 宋行长. 轻子与非轻子弱相互作用的唯象描述. 物理学报, 1965, 21(1): 218-220. doi: 10.7498/aps.21.218
计量
  • 文章访问数:  2485
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-06
  • 修回日期:  2023-08-11
  • 上网日期:  2023-10-08
  • 刊出日期:  2023-10-20

/

返回文章
返回