搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

托卡马克无碰撞捕获电子模在时空表象中的群速度

刘朝阳 章扬忠 谢涛 刘阿娣 周楚

引用本文:
Citation:

托卡马克无碰撞捕获电子模在时空表象中的群速度

刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚

Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak

Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu
PDF
HTML
导出引用
  • 按照章等[Zhang Y Z, Liu Z Y, Mahajan S M, Xie T, Liu J 2017 Phys. Plasmas 24 122304 ]发展的漂移波-带状流理论, 将多重尺度导数展开法应用到电子漂移动理学方程, 零级为描述微观尺度捕获电子模的线性本征模方程, 一级为介观尺度受带状流调制的捕获电子模的包络方程. 其中线性本征模方程已经在谢等[Xie T, Zhang Y Z, Mahajan S M, Wu F, He Hongda, Liu Z Y 2019 Phys. Plasmas 26 022503 ]的研究中被求解, 利用该文得到的捕获电子模的本征值和二维模式结构计算包络方程中的群速度. 径向群速度由托卡马克磁场的测地曲率贡献, 极向群速度来自逆磁漂移速度和法向曲率, 它们仅是极向角的函数, 后者给出极向角到时间的映射. 径向群速度作为时间的函数, 其周期在毫秒量级, 具有快速过零的特征. 这为研究捕获电子模驱动带状流提供了充实的理论基础.
    The multiple scale derivative expansion method is used to manipulate the electron drift kinetic equation, following the theoretical framework of drift wave–zonal flow system developed by Zhang et al. [Zhang Y Z, Liu Z Y, Mahajan S M, Xie T, Liu J 2017 Phys. Plasmas 24 122304 ]. At the zeroth order it is the linear eigenmode equation describing the trapped electron mode on a mirco-scale. At the first order it is the envelop equation for trapped electron mode modulated by the zonal flow on a meso-scale. The eigenmode equation has been solved by Xie et al. [Xie T, Zhang Y Z, Mahajan S M, Wu F, He Hongda, Liu Z Y 2019 Phys. Plasmas 26 022503 ] to obtain the eigenvalue and two-dimensional mode structure of trapped electron mode. These are essential components in calculating group velocities contained in the envelop equation. The radial group velocity arises from the geodesic curvature of magnetic field in tokamak. The poloidal group velocity stems from the normal curvature and diamagnetic drift velocity, which yields the mapping between the poloidal angle and time. Since the radial group velocity is also a function of poloidal angle, it is mapped to a periodic function of time with a period of milliseconds. The numerical results indicate the rapid zero-crossing, which is significant in the drift wave – zonal flow system and provides a sound foundation for studying zonal flow driven by trapped electron mode.
      通信作者: 刘朝阳, lzy0928@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U1967206, 11975231, 11805203, 11775222)、国家磁约束聚变能源研发计划(批准号: 2018YFE0311200, 2017YFE0301204)和中国科学院前沿科学重点研究项目(批准号: QYZDB-SSW-SYS004)资助的课题
      Corresponding author: Liu Zhao-Yang, lzy0928@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1967206, 11975231, 11805203, 11775222), the National MCF Energy R & D Program, China (Grant Nos. 2018YFE0311200, 2017YFE0301204), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS004)
    [1]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Controlled Fusion 47 R35Google Scholar

    [2]

    Itoh K., Itoh S I, Diamond P H 2006 Phys. Plasmas 13 055502Google Scholar

    [3]

    Fujisawa A 2009 Nucl. Fusion 49 013001Google Scholar

    [4]

    Smolyakov A I, Diamond P H, Shevchenko V I 2000 Phys. Plasmas 7 1349Google Scholar

    [5]

    Chen L, White R B, Zonca F 2004 Phys. Rev. Lett. 92 075004Google Scholar

    [6]

    Guo Z B, Hahm T S 2016 Nucl. Fusion 56 066014Google Scholar

    [7]

    Zhang Y Z, Liu Z Y, Mahajan S M, Xie T, Liu J 2017 Phys. Plasmas 24 122304Google Scholar

    [8]

    章扬忠, 谢涛 2013 核聚变与等离子体物理 33 193Google Scholar

    Zhang Y Z, Xie T 2013 Nucl. Fusion Plasma Phys. 33 193Google Scholar

    [9]

    Xie T, Qin H, Zhang Y Z, Mahajan S M 2016 Phys. Plasmas 23 042514Google Scholar

    [10]

    Tang W M 1978 Nucl. Fusion 18 1089Google Scholar

    [11]

    Landau L D, Lifshitz E M 1987 Fluid Mechanics (2nd Ed.) (Oxford: Pergamon Press) p263

    [12]

    Miki K, Diamond P H 2010 Phys. Plasmas 17 032309Google Scholar

    [13]

    Qiu Z Y, Chen L, Zonca F 2014 Phys. Plasmas 21 022304Google Scholar

    [14]

    Qiu Z Y, Chen L, Zonca F 2015 Phys. Plasmas 22 042512Google Scholar

    [15]

    Sasaki M, Itoh K, Hallatschek K, Kasuya N, Lesur M, Kosuga Y, Itoh S I 2017 Sci. Rep. 7 16767Google Scholar

    [16]

    Catto P J 1978 Plasma Phys. Controlled Fusion 20 719

    [17]

    Catto P J, Tang W M, Baldwin D E 1981 Plasma Phys. Controlled Fusion 23 639

    [18]

    Brunner S, Fivaz M, Tran T M, Vaclavik J 1998 Phys. Plasmas 5 3929Google Scholar

    [19]

    Johnson R S 2005 Singular Perturbation Theory (New York: Springer) Chapter 4

    [20]

    Xie T, Zhang Y Z, Mahajan S M, Wu F, He Hongda, Liu Z Y 2019 Phys. Plasmas 26 022503Google Scholar

    [21]

    Cheng C Z, Chen L 1981 Nucl. Fusion 21 403Google Scholar

    [22]

    Liu Z Y, Zhang Y Z, Mahajan S M, Liu A D, Xie T, Zhou C, Lan T, Xie J L, Li H, Zhuang G, Liu W D 2021 Plasma Sci. Technol. 23 035101

  • 图 1  (a) 捕获电子模扰动电势${\tilde \varphi _n}\left( {r, \vartheta } \right)$实部的等高线图; (b) 坏曲率区的放大图

    Fig. 1.  (a) Level contours of the real parts of the perturbed electrostatic potential ${\tilde \varphi _n}\left( {r, \vartheta } \right)$ for trapped electron mode; (b) the close-up view in bad curvature region.

    图 2  (a) 捕获电子模扰动密度$\tilde n\left( {r, \vartheta } \right)$实部的等高线图; (b) 坏曲率区的放大图

    Fig. 2.  (a) Level contours of the real parts of the perturbed density $\tilde n\left( {r, \vartheta } \right)$ for trapped electron mode; (b) the close-up view in bad curvature region.

    图 3  (a) 捕获电子模扰动压强$\tilde \varepsilon \left( {r, \vartheta } \right)$实部的等高线图; (b) 坏曲率区的放大图

    Fig. 3.  (a) Level contours of the real parts of the perturbed pressure $\tilde \varepsilon \left( {r, \vartheta } \right)$ for trapped electron mode; (b) the close-up view in bad curvature region.

    图 4  (18)式定义的两个平均量 (a)$\bar E\left( \vartheta \right)$; (b)$\bar \varPhi \left( \vartheta \right)$

    Fig. 4.  Two average quantities and defined in Equation (18): (a) $\bar E\left( \vartheta \right)$; (b) $\bar \varPhi \left( \vartheta \right)$.

    图 5  捕获电子模的 (a) 径向群速度${\upsilon _{\rm{gr}}}\left( \vartheta \right)$, (b) 极向群速度${\upsilon _{\rm{gy}}}\left( \vartheta \right)$和(c) 径向群速度随时间的变化${\upsilon _{\rm{gr}}}\left( t \right)$

    Fig. 5.  (a) Radial group velocity ${\upsilon _{\rm{gr}}}\left( \vartheta \right)$, (b) poloidal group velocity ${\upsilon _{\rm{gy}}}\left( \vartheta \right)$, and (c) radial group velocity versus time ${\upsilon _{\rm{gr}}}\left( t \right)$ for trapped electron mode.

    表 1  基本平衡参数

    Table 1.  Basic equilibrium parameters.

    R/ma/m${r_j}/a$${T_{\rm{e}}}$/eV${\tau _{\rm{e}}}$qB/T$\hat s$${L_n}/R$${\eta _{\rm{e}}}$${\eta _{\rm{i}}}$n
    1.650.40.412501011.3510.110–44
    下载: 导出CSV
  • [1]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Controlled Fusion 47 R35Google Scholar

    [2]

    Itoh K., Itoh S I, Diamond P H 2006 Phys. Plasmas 13 055502Google Scholar

    [3]

    Fujisawa A 2009 Nucl. Fusion 49 013001Google Scholar

    [4]

    Smolyakov A I, Diamond P H, Shevchenko V I 2000 Phys. Plasmas 7 1349Google Scholar

    [5]

    Chen L, White R B, Zonca F 2004 Phys. Rev. Lett. 92 075004Google Scholar

    [6]

    Guo Z B, Hahm T S 2016 Nucl. Fusion 56 066014Google Scholar

    [7]

    Zhang Y Z, Liu Z Y, Mahajan S M, Xie T, Liu J 2017 Phys. Plasmas 24 122304Google Scholar

    [8]

    章扬忠, 谢涛 2013 核聚变与等离子体物理 33 193Google Scholar

    Zhang Y Z, Xie T 2013 Nucl. Fusion Plasma Phys. 33 193Google Scholar

    [9]

    Xie T, Qin H, Zhang Y Z, Mahajan S M 2016 Phys. Plasmas 23 042514Google Scholar

    [10]

    Tang W M 1978 Nucl. Fusion 18 1089Google Scholar

    [11]

    Landau L D, Lifshitz E M 1987 Fluid Mechanics (2nd Ed.) (Oxford: Pergamon Press) p263

    [12]

    Miki K, Diamond P H 2010 Phys. Plasmas 17 032309Google Scholar

    [13]

    Qiu Z Y, Chen L, Zonca F 2014 Phys. Plasmas 21 022304Google Scholar

    [14]

    Qiu Z Y, Chen L, Zonca F 2015 Phys. Plasmas 22 042512Google Scholar

    [15]

    Sasaki M, Itoh K, Hallatschek K, Kasuya N, Lesur M, Kosuga Y, Itoh S I 2017 Sci. Rep. 7 16767Google Scholar

    [16]

    Catto P J 1978 Plasma Phys. Controlled Fusion 20 719

    [17]

    Catto P J, Tang W M, Baldwin D E 1981 Plasma Phys. Controlled Fusion 23 639

    [18]

    Brunner S, Fivaz M, Tran T M, Vaclavik J 1998 Phys. Plasmas 5 3929Google Scholar

    [19]

    Johnson R S 2005 Singular Perturbation Theory (New York: Springer) Chapter 4

    [20]

    Xie T, Zhang Y Z, Mahajan S M, Wu F, He Hongda, Liu Z Y 2019 Phys. Plasmas 26 022503Google Scholar

    [21]

    Cheng C Z, Chen L 1981 Nucl. Fusion 21 403Google Scholar

    [22]

    Liu Z Y, Zhang Y Z, Mahajan S M, Liu A D, Xie T, Zhou C, Lan T, Xie J L, Li H, Zhuang G, Liu W D 2021 Plasma Sci. Technol. 23 035101

  • [1] 丁肖冠, 赵开君, 谢耀禹, 陈志鹏, 陈忠勇, 杨州军, 高丽, 丁永华, 温思宇, 胡莹欣. J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241364
    [2] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] 姜其畅, 刘超, 刘晋宏, 张俊香. 原子系统中远失谐脉冲光束对的群速度操控. 物理学报, 2015, 64(9): 094208. doi: 10.7498/aps.64.094208
    [5] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [6] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构. 物理学报, 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [7] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [8] 黄捷, 白兴宇, 曾浩, 唐昌建. 托卡马克中ECW对LHW耦合特性的影响研究. 物理学报, 2013, 62(2): 025202. doi: 10.7498/aps.62.025202
    [9] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [10] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [11] 陆赫林, 陈忠勇, 李跃勋, 杨恺. 磁场剪切对离子温度梯度模带状流产生的影响. 物理学报, 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [12] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [13] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [14] 陆赫林, 彭晓东, 邱孝明, 王顺金. 逆磁效应对交换模湍流产生的带状流的影响. 物理学报, 2009, 58(9): 6387-6391. doi: 10.7498/aps.58.6387
    [15] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [16] 张建心, 屈道宽, 冯帅, 王义全, 王传奎. 微腔旋转对耦合腔光波导群速度的影响. 物理学报, 2009, 58(12): 8339-8344. doi: 10.7498/aps.58.8339
    [17] 洪文玉, 严龙文, 赵开君, 兰 涛, 董家齐, 俞昌旋, 程 均, 钱 俊, 刘阿棣, 罗萃文, 徐征宇, 黄 渊, 杨青巍. HL-2A装置中的带状流三维特性研究和探针设计. 物理学报, 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [18] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [20] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
计量
  • 文章访问数:  4184
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-27
  • 修回日期:  2021-01-19
  • 上网日期:  2021-05-29
  • 刊出日期:  2021-06-05

/

返回文章
返回