搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个快速模拟热稠密非平衡等离子体的碰撞辐射模型

韩小英 李凌霄 戴振生 郑无敌 古培俊 吴泽清

引用本文:
Citation:

一个快速模拟热稠密非平衡等离子体的碰撞辐射模型

韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清

A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions

Han Xiao-Ying, Li Ling-Xiao, Dai Zhen-Sheng, Zheng Wu-Di, Gu Pei-Jun, Wu Ze-Qing
PDF
HTML
导出引用
  • 在实验室和天体等离子体研究中, 原子/离子的激发、退激发以及电离、复合过程对等离子体的电离和能量平衡有着重要的影响. 在激光等离子体作用的辐射流体模拟中, 需要在线计算等离子体的平均离化度和吸收/发射系数. 在现有的计算能力下, 通常采用比较简单的平均原子(average atom, AA)模型进行在线计算. 随着实验技术和计算能力的发展, 急需发展能够在线计算的细致非平衡原子模型. 本文报道了最新发展的多离化度平均离子碰撞辐射模型(multi-average ion collisional-radiative model, MAICRM). 该模型用一个平均离子模拟等离子体中某一离化度所有离子的平均轨道占据数和布居, 即每个平均离子的轨道占据数为该离化度所有离子的轨道占据数的平均; 平均离子的布居等于该离化度离子的布居和. 平均离子的轨道占据数和布居通过迭代求解速率方法得到. 用该模型计算了Fe, Xe和Au非平衡等离子体的离化度分布, 计算结果与细致组态和超组态模型以及实验测量符合, 而计算量相对于细致组态/超组态大大降低. 预期该方法能与辐射流体程序耦合, 实现细致非平衡原子模型的在线计算.
    Aiming at the requirement of the on-line detailed atomic model in radiation hydrodynamic simulations, we propose a general model, multi-average ion collisional-radiative model (MAICRM), to rapidly simulate the ionization and charge state distribution of hot dense plasma under non-local thermal equilibrium (NLTE) conditions. In this model, an average ion is used to characterize the features of all the atomic states at one single charge state, including the average orbital occupation and the total population of the atomic states. The rate equations for the orbital occupations and the population are derived from the rate equations of the detailed configurations and separated into two sets under the two assumptions: one is the single orbital rate coefficients (including no occupation nor hole number of the relative orbital) that are only dependent on the charge state, and the other is the coupling of the excitation/de-excitation process and ionization/recombination process, which are weak. Namely, the orbital occupation of an average ion is mainly determined by the excitation/de-excitation process under a certain density and temperature; the population of the average ions is determined by the ionization/recombination process with the fixed orbital occupation. The two sets of rate equations are solved sequentially and iteratively until a set of converged orbital occupation and population values is obtained. The interplay between the occupation and the population is implicit in the excitation/de-excitation rate coefficient and ionization/recombination rate coefficient, each of which is a function of electron density and temperature as well as occupation. In this work, using the newly developed method and codes, the mean ionizations and charge state distributions of Fe, Xe and Au plasmas under different plasma conditions are calculated and in good agreement with the experimental results and DCA/SCA calculations. Meanwhile, compared with the DCA/SCA calculations, in which hundreds or thousands of detailed atomic states at each charge state are considered to obtain a converged ionization balance, MAICRM only considers one kind of ion at one single charge state, thus the computational cost of MAICRM is much reduced and lower than that of DCA/SCA. Due to its good degree of accuracy for ionization balance and its low computational cost, MAICRM is expected to be incorporated into the radiation hydrodynamic program to realize the online calculation of detailed nonequilibrium atomic models in the future.
      通信作者: 韩小英, han_xiaoying@iapcm.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0402300)资助的课题
      Corresponding author: Han Xiao-Ying, han_xiaoying@iapcm.ac.cn
    • Funds: Project supported by the National Key Research & Development Program of China (Grant No. 2017YFA0402300)
    [1]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [2]

    Whitney K G, Pulsifer P E, Apruzese J P, et al. 2001 Phys. Plasmas 8 3708Google Scholar

    [3]

    Faussurier G, Blancard C, Decoster B A 1997 Phys. Rev. E 56 3474Google Scholar

    [4]

    Bauche-Arnoult C, Bauche J, Klapisch M 1988 Adv. At. Mol. Phys. 23 131

    [5]

    Bar-Shalom A, Oreg J, Goldstein W H, Shvarts D, Zigler A 1989 Phys. Rev. A. 40 3183Google Scholar

    [6]

    Ralchenko Y 2001 J. Quant. Spectrosc. Radiat. Transf. 71 609Google Scholar

    [7]

    Huo W Y, Lan K, Li Y S, et al. 2012 Phys. Rev. Lett. 109 145004Google Scholar

    [8]

    Huo W Y, Li Z C, Chen Y H, et al. 2016 Phys. Rev. Lett. 117 125002Google Scholar

    [9]

    Rosen M D, Scott H A, Hinkel D E, et al. 2011 High Energy Density Phys. 7 180Google Scholar

    [10]

    Jones O S, Suter L J, Scott H A, et al. 2017 Phys. Plasmas 24 056312Google Scholar

    [11]

    Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203Google Scholar

    [12]

    Foord M E, Heeter R F, van Hoof P A M, et al. 2004 Phys. Rev. Lett. 93 055002Google Scholar

    [13]

    Klapisch M, Schwob J L, Fraenkel B S, Oreg J 1977 J. Opt. Soc. Am. 67 148Google Scholar

    [14]

    Kelly R L 1987 J. Phys. Chem. Ref. Data 16 860

    [15]

    Ferland G J, Korista K T, Verner D A, et al. 1998 Publ. Astron. Soc. Pac. 110 761

    [16]

    Rose S J 1998 J. Phys. B 31 2129Google Scholar

    [17]

    Chung H K, Morgan W L, Lee R W, et al. 2003 J. Quant. Spectrosc. Radiat. Transf. 99 102

    [18]

    Chenais-Popovics C, Malka V, Gauthier J C, et al. 2002 Phys. Rev. E. 65 046418Google Scholar

    [19]

    Peyrusse O 2000 J. Phys. B. 33 4303Google Scholar

    [20]

    Bauche J, Bauche-Arnoult C, Klapisch M 1991 J. Phys. B. 24 1Google Scholar

    [21]

    Heeter R F, Hansen S B, Fournier K B, et al. 2007 Phys. Rev. Lett. 99 195001Google Scholar

    [22]

    van Regemorter H 1962 Astrophys. J. 136 906Google Scholar

    [23]

    Mewe R 1972 Astron. Astrophys. 20 215

    [24]

    Kramers H A 1923 Philos. Mag. 46 836Google Scholar

    [25]

    Lotz W 1967 Z. Phys. 206 205Google Scholar

  • 图 1  Fe等离子体的平均离化度和离化度分布的比较. 括号里的数值是实验的误差范围和GALAXY计算值的变化范围

    Fig. 1.  The comparison of the mean ionization and charge state distribution (CSD) of Fe plasma. The data in the parenthesis are the uncertainties of experimental value and the variation range of GALAXY codes.

    图 2  Xe等离子体在${T_{\rm{e}}} \!=\! 415\;{\rm{ eV}}$, ${N_i} \!=\! 4.75 \!\times \! {\rm{1}}{{\rm{0}}^{18}}\;{\rm{ c}}{{\rm{m}}^{{{ - 3}}}}$时的离化度分布. 括号里的数是实验的误差范围

    Fig. 2.  The comparison of the mean ionization and CSD of Xe plasma at ${T_{\rm{e}}} = 415\;{\rm{eV}}$, ${N_i} = 4.75\times 10^{18}\;{\rm{c}}{{\rm{m}}^{{{ - 3}}}}$. The data in parenthesis is the experimental uncertainties.

    图 3  MAICRM计算的不同状态下Au等离子体的$\langle Z \rangle$和离化度分布与实验测量[21]的比较. (a), (b), (c)和(d)中括号里的数是实验误差, (e)中电子温度Te, 辐射场温度Tr和电子密度Ne的单位分别是keV, eV和1020 cm–3

    Fig. 3.  The comparisons of the mean ionization $\langle Z \rangle$ and CSD of Au plasma between MAICRM and the experimental results[21]. In panels (a), (b), (c) and (d) the data in parenthesis are the experimental uncertainties. In panel (e) the units of electron temperature Te, radiation temperature Tr and electron density Ne are keV, eV and 1020 cm–3 respectively.

  • [1]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [2]

    Whitney K G, Pulsifer P E, Apruzese J P, et al. 2001 Phys. Plasmas 8 3708Google Scholar

    [3]

    Faussurier G, Blancard C, Decoster B A 1997 Phys. Rev. E 56 3474Google Scholar

    [4]

    Bauche-Arnoult C, Bauche J, Klapisch M 1988 Adv. At. Mol. Phys. 23 131

    [5]

    Bar-Shalom A, Oreg J, Goldstein W H, Shvarts D, Zigler A 1989 Phys. Rev. A. 40 3183Google Scholar

    [6]

    Ralchenko Y 2001 J. Quant. Spectrosc. Radiat. Transf. 71 609Google Scholar

    [7]

    Huo W Y, Lan K, Li Y S, et al. 2012 Phys. Rev. Lett. 109 145004Google Scholar

    [8]

    Huo W Y, Li Z C, Chen Y H, et al. 2016 Phys. Rev. Lett. 117 125002Google Scholar

    [9]

    Rosen M D, Scott H A, Hinkel D E, et al. 2011 High Energy Density Phys. 7 180Google Scholar

    [10]

    Jones O S, Suter L J, Scott H A, et al. 2017 Phys. Plasmas 24 056312Google Scholar

    [11]

    Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203Google Scholar

    [12]

    Foord M E, Heeter R F, van Hoof P A M, et al. 2004 Phys. Rev. Lett. 93 055002Google Scholar

    [13]

    Klapisch M, Schwob J L, Fraenkel B S, Oreg J 1977 J. Opt. Soc. Am. 67 148Google Scholar

    [14]

    Kelly R L 1987 J. Phys. Chem. Ref. Data 16 860

    [15]

    Ferland G J, Korista K T, Verner D A, et al. 1998 Publ. Astron. Soc. Pac. 110 761

    [16]

    Rose S J 1998 J. Phys. B 31 2129Google Scholar

    [17]

    Chung H K, Morgan W L, Lee R W, et al. 2003 J. Quant. Spectrosc. Radiat. Transf. 99 102

    [18]

    Chenais-Popovics C, Malka V, Gauthier J C, et al. 2002 Phys. Rev. E. 65 046418Google Scholar

    [19]

    Peyrusse O 2000 J. Phys. B. 33 4303Google Scholar

    [20]

    Bauche J, Bauche-Arnoult C, Klapisch M 1991 J. Phys. B. 24 1Google Scholar

    [21]

    Heeter R F, Hansen S B, Fournier K B, et al. 2007 Phys. Rev. Lett. 99 195001Google Scholar

    [22]

    van Regemorter H 1962 Astrophys. J. 136 906Google Scholar

    [23]

    Mewe R 1972 Astron. Astrophys. 20 215

    [24]

    Kramers H A 1923 Philos. Mag. 46 836Google Scholar

    [25]

    Lotz W 1967 Z. Phys. 206 205Google Scholar

  • [1] 胡杨, 罗婧怡, 蔡雨烟, 卢新培. 外加磁场对螺旋等离子体的影响. 物理学报, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [2] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [3] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟. 物理学报, 2012, 61(1): 015201. doi: 10.7498/aps.61.015201
    [4] 倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究. 物理学报, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [5] 吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真. 石英管对空气中锥-板结构纳秒脉冲放电的影响. 物理学报, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [6] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [7] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [8] 王浩, 刘国权, 岳景朝, 栾军华, 秦湘阁. MacPherson-Srolovitz晶粒长大速率方程的仿真验证. 物理学报, 2009, 58(13): 137-S140. doi: 10.7498/aps.58.137
    [9] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型. 物理学报, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [10] 李小燕, 郑志强, 冯卓宏, 刘 璟, 姜翠华, 孔令凯, 明 海. 掺铒锆钛酸铅镧陶瓷的上转换动力学分析. 物理学报, 2008, 57(5): 3244-3248. doi: 10.7498/aps.57.3244
    [11] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究. 物理学报, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [12] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [13] 张新陆, 王月珠, 李 立, 鞠有伦. 端面抽运Tm, Ho:YLF激光器热转换系数及热透镜效应的研究. 物理学报, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [14] 於海武, 徐美健, 段文涛, 隋 展. Yb离子抽运动力学及脉冲储能特性研究. 物理学报, 2007, 56(7): 4158-4168. doi: 10.7498/aps.56.4158
    [15] 吴朝晖, 宋 峰, 刘淑静, 蔡 虹, 苏 静, 田建国, 张光寅. LD抽运Er3+,Yb3+共掺磷酸盐玻璃被动调Q激光器的理论分析和数值计算. 物理学报, 2006, 55(9): 4659-4664. doi: 10.7498/aps.55.4659
    [16] 张新陆, 王月珠. 能量传递上转换对Tm,Ho:YLF调Q激光器上能级寿命的影响. 物理学报, 2006, 55(3): 1160-1164. doi: 10.7498/aps.55.1160
    [17] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [18] 宋 峰, 苏瑞渊, 傅 强, 覃 斌, 田建国, 张光寅. 高浓度镱铒共掺磷酸盐光纤放大器增益特性. 物理学报, 2005, 54(11): 5228-5232. doi: 10.7498/aps.54.5228
    [19] 宋峰, 孟凡臻, 丁欣, 张潮波, 杨嘉, 张光寅. 1.54μmEr3+,Yb3+共掺玻璃激光器的速率方程及数值分析. 物理学报, 2002, 51(6): 1233-1238. doi: 10.7498/aps.51.1233
    [20] 庆承瑞, 周玉美. 环形非圆截面等离子体自由界面的磁流体平衡方程解. 物理学报, 1980, 29(1): 106-110. doi: 10.7498/aps.29.106
计量
  • 文章访问数:  5127
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2021-01-04
  • 上网日期:  2021-05-26
  • 刊出日期:  2021-06-05

/

返回文章
返回