搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低杂波注入对剥离气球模的作用

樊浩 陈少永 牟茂淋 刘泰齐 张业民 唐昌建

引用本文:
Citation:

低杂波注入对剥离气球模的作用

樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建

Influence of lower hybrid wave injection on peeling-ballooning modes

Fan Hao, Chen Shao-Yong, Mou Mao-Lin, Liu Tai-Qi, Zhang Ye-Min, Tang Chang-Jian
PDF
HTML
导出引用
  • 基于BOUT++代码研究了托卡马克高约束模等离子体中低杂波(LHW)注入对边缘台基区剥离气球模(P-B模)线性和非线性特性的影响. 模拟中分别考虑了LHW驱动的常规主等离子体电流和刮削层螺旋电流丝(HCF)产生三维扰动磁场对P-B模的作用. 线性结果表明, LHW驱动的主等离子体电流通过降低平衡的归一化压强梯度和磁剪切, 使得线性环向模谱整体向高模数和低增长率的方向移动. 非线性模拟表明, 由于线性模谱的展宽, LHW驱动的主等离子体电流对P-B模不同模式具有整体的抑制效果, 可以降低边缘局域模(ELM)造成的台基能量损失; LHW驱动HCF产生的三维扰动磁场可以通过增强不同模式之间的耦合, 促进主模之外的其他模式增长来降低ELM造成的能量损失. 研究发现, HCF产生的三维扰动磁场促进增长的P-B模式集中在较高模数, 当P-B模的主导模式远离此模数区间, ELM能量损失降低更明显. 研究结果有助于深入理解LHW控制ELM实验中的物理机制.
    The high-confinement mode (H-mode) significantly enhances the energy and particle confinement in fusion plasma compared with the low-confinement mode (L-mode), and it is the basic operation scenario for ITER and CFETR. Edge localized mode (ELM) often appears in H-mode, helping to expel impurities to maintain a longer stable state. However, the particle burst and energy burst from ELM eruptions can severely damage the first wall of fusion device, so, it is necessary to control the ELM. Experiments on EAST tokamak and HL-2A tokamak have been conducted with ELM mitigation by lower hybrid wave (LHW), confirming the effect of LHW on ELMs, but the physical mechanism of ELM mitigation by LHW is still not fully understood. In this paper, the influences of LHW injection on the linear and nonlinear characteristics of peeling-ballooning mode (P-B mode) are investigated in the edge pedestal region of H-mode plasma in tokamak by using the BOUT++ code. The simulations take into consideration both the conventional main plasma current driven by LHW and the three-dimensional perturbed magnetic field generated by the scrape-off layer helical current filament (HCF) on the P-B mode. The linear results show that the core plasma current driven by LHW moves the linear toroidal mode spectrum towards higher mode numbers and lower growth rates by reducing the normalized pressure gradient and magnetic shear of the equilibrium. Nonlinear simulations indicate that due to the broadening of the linear mode spectrum, the core current driven by LHW can reduce the pedestal energy loss caused by ELM through globally suppressing different toroidal modes of the P-B mode, and the three-dimensional perturbed magnetic field generated by LHW-driven HCF can reduce the energy loss caused by ELMs through promoting the growth of modes other than the main mode and enhancing the coupling between different modes. It is found in the study that the P-B mode promoted by the three-dimensional perturbed magnetic field generated by HCF has a mode number threshold, and when the dominant mode of the P-B mode is far from the mode number threshold driven by the three-dimensional perturbed magnetic field, the energy loss due to ELMs is more significantly reduced. These results contribute to a more in-depth understanding of the physical mechanism in ELM control experiment by LHW.
      通信作者: 牟茂淋, mlmou@scu.edu.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2019YFE03090400)和国家自然科学基金(批准号: 12375222, 11775154)资助的课题.
      Corresponding author: Mou Mao-Lin, mlmou@scu.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Grant No. 2019YFE03090400) and the National Natural Science Foundation of China (Grant Nos. 12375222, 11775154).
    [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [2]

    Leonard A W 2014 Phys. Plasmas 21 090501Google Scholar

    [3]

    Loarte A, Saibene G, Sartori R, et al. 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [4]

    Lang P T, Loarte A, Saibene G, et al. 2013 Nucl. Fusion 53 043004Google Scholar

    [5]

    Loarte A, Huijsmans G, Futatani S, et al. 2014 Nucl. Fusion 54 033007Google Scholar

    [6]

    Hughes J W, Hubbard A E, Wallace G, et al. 2010 Nucl. Fusion 50 064001Google Scholar

    [7]

    Wan B, Li J, Guo H, Liang Y, Xu G, Gong X Z for the EAST Team, International Collaborators 2013 Nucl. Fusion 53 104006Google Scholar

    [8]

    Rossel J X, Moret J M, Coda S, Sauter O, Goodman T P, Felici F, Testa D, Martin Y 2012 Nucl. Fusion 52 032004Google Scholar

    [9]

    Felici F, Rossel J X, Duval B P, Coda S, Goodman T P, Martin Y, Moret J M, Sauter O, the TCV Team 2013 Nucl. Fusion 53 113018Google Scholar

    [10]

    Baylor L R, Commaux N, Jernigan T C, et al. 2013 Phys. Rev. Lett. 110 245001Google Scholar

    [11]

    Chen S Y, Huang J, Sun T T, Wang Z H, Tang C J 2014 Phys. Plasmas 21 112512Google Scholar

    [12]

    Evans T E, Moyer R A, Watkins J G, et al. 2005 J. Nucl. Mater. 337–339 691Google Scholar

    [13]

    Canik J M, Maingi R, Evans T E, et al. 2010 Nucl. Fusion 50 034012Google Scholar

    [14]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [15]

    Huang J, Chen S Y, Wang Z H, Tang C J 2015 Phys. Plasmas 22 122507Google Scholar

    [16]

    Degeling A W, Martin Y R, Lister J B, Villard L, Dokouka V N, Lukash V E, Khayrutdinov R R 2003 Plasma Phys. Control. Fusion 45 1637Google Scholar

    [17]

    Wu N, Chen S Y, Song X M, Mou M L, Huang J, Wang Z T, Tang C J, Song X, Xia F, Jiang M, HL-2A Team 2017 Phys. Plasmas 24 092507Google Scholar

    [18]

    Zhang H M, Wu J, Li J X, Yao L M, Xu J C, Wu Y Z, Liu Q Y, Guo P C 2021 Acta Phys. Sin. 70 235203Google Scholar

    [19]

    刘冠男, 李新霞, 刘洪波, 孙爱萍 2023 物理学报 72 245202Google Scholar

    Liu G N, Li X X, Liu H B, Sun A P 2023 Acta Phys. Sin. 72 245202Google Scholar

    [20]

    Zhou T T, Xiang N, Gan C Y, Jia G Z, Chen J L 2022 Chin. Phys. B 31 095201Google Scholar

    [21]

    Xu Z, Wu Z W, Zhang L, Huang Y H, Gao W, Cheng Y X, Lin X D, Gao X, Chen Y J, Li L, Jie Y X, Zang Q, Liu H Q, EAST Team 2021 Chin. Phys. B 30 075205Google Scholar

    [22]

    Liang Y, Gong X Z, Gan K F, et al. 2013 Phys. Rev. Lett. 110 235002Google Scholar

    [23]

    Xiao G L, Zhong W L, Zou X L, et al. 2017 Phys. Plasmas 24 122507Google Scholar

    [24]

    Cui B T, Ji X Q, Sun T F, Liang S Y, Zhang J Z, Wang A, He M Y 2021 Fusion Eng. Des. 173 112963Google Scholar

    [25]

    Li S H, Wang N C, Ding Y H, et al. 2022 Plasma Phys. Control. Fusion 64 075005Google Scholar

    [26]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [27]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commun. 24 377Google Scholar

    [28]

    Pankin A Y, Bateman G, Brennan D P, Kritz A H, Kruger S, Snyder P B, Sovinec C, the NIMROD Team 2007 Plasma Phys. Control. Fusion 49 S63Google Scholar

    [29]

    Pamela S J P, Huijsmans G T A, Eich T, et al. 2017 Nucl. Fusion 57 076006Google Scholar

    [30]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [31]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [32]

    Xia T Y, Xu X Q 2013 Phys. Plasmas 20 052102Google Scholar

    [33]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [34]

    Mou M L, Huang J, Wu N, Chen S Y, Tang C J 2016 Phys. Lett. A 380 2544Google Scholar

    [35]

    Dong L K, Chen S Y, Mou M L, Tang C J 2020 Plasma Sci. Technol. 22 115101Google Scholar

    [36]

    Huang J, Chen S Y, Tang C J 2016 Phys. Plasmas 23 052513Google Scholar

    [37]

    Xia T Y, Gui B, Huang Y Q, Wu Y B, Xiao X T, EAST Team 2019 Nucl. Fusion 59 076043Google Scholar

    [38]

    Shi Y J, Xu G S, Wang F D, et al. 2011 Phys. Rev. Lett. 106 235001Google Scholar

    [39]

    Rice J E, Podpaly Y A, Reinke M L, et al. 2013 Nucl. Fusion 53 093015Google Scholar

    [40]

    Chouli B, Fenzi C, Garbet X, et al. 2014 Plasma Phys. Control. Fusion 56 095018Google Scholar

    [41]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [42]

    Fisch N J, Rax J M 1992 Phys. Rev. Lett. 69 612Google Scholar

    [43]

    Smirnov A P, Harvey R W 2001 The GENRAY Ray Tracing Code CompX Report No. CompX-2000-01

    [44]

    Ehst D A, Karney C F F 1991 Nucl. Fusion 31 1933Google Scholar

    [45]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 CORSICA: A Comprehensive Simulation of Toroidal Magnetic-fusion Devices. Final Report to the LDRD Program (Livermore: Lawrence Livermore National Lab.) Report No: UCRL-ID-126284

    [46]

    Xu X Q, Ma J F, Li G Q 2014 Phys. Plasmas 21 120704Google Scholar

    [47]

    Burrell K H 1997 Phys. Plasmas 4 1499Google Scholar

    [48]

    Ding B J, Bonoli P T, Tuccillo A, et al. 2018 Nucl. Fusion 58 095003Google Scholar

    [49]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [50]

    Zhang Y, Huang J, Chen S Y, Tang C J 2017 Phys. Plasmas 24 062108Google Scholar

    [51]

    Li J, Guo H Y, Wan B N, et al. 2013 Nat. Phys. 9 817Google Scholar

    [52]

    Dong L K, Chen S Y, Mou M L, Luo Y, Qin C C, Tang C J 2023 Nucl. Fusion 63 086023Google Scholar

    [53]

    Liu Y, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y, Suttrop W, Yang X, Zhou L 2016 Plasma Phys. Control. Fusion 58 114005Google Scholar

    [54]

    Oyama N, Sakamoto Y, Isayama A, et al. 2005 Nucl. Fusion 45 871Google Scholar

    [55]

    Aiba N, Giroud C, Honda M, et al. 2017 Nucl. Fusion 57 126001Google Scholar

    [56]

    Luo Y, Chen S Y, Huang J, Xiong Y Y, Tang C J 2016 Phys. Plasmas 23 042302Google Scholar

    [57]

    Xi P W, Xu X Q, Wang X G, Xia T Y 2012 Phys. Plasmas 19 092503Google Scholar

    [58]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

  • 图 1  模拟中采用的平衡截面.

    Fig. 1.  Cross-section of equilibrium used in the simulation.

    图 2  初始平衡的压强和电流剖面.

    Fig. 2.  Pressure and current profiles of the original equilibrium.

    图 3  不同LHW驱动电流下的(a)平行电流剖面和(b)安全因子剖面

    Fig. 3.  Parallel current profiles (a) and safety factor profiles (b) with different LHW-driven currents.

    图 4  LHW驱动的HCF的三维结构示意图

    Fig. 4.  Schematic diagram of the three-dimensional structure of LHW-driven HCF.

    图 5  (a) P-B模归一化线性增长率, 其中$ {\omega }_{{\mathrm{A}}}=1/{\tau }_{{\mathrm{A}}} $为阿尔芬频率; (b)平衡的归一化压强梯度, 其中$ \alpha = $ $\left(2{\mu }_{0}{R}_{0}{q}^{2}{\mathrm{d}}p\right)/\left({B}^{2}{\mathrm{d}}r\right) $

    Fig. 5.  (a) Linear growth rates of the P-B mode; (b) normalized pressure gradient of the equilibrium with different $ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $. Here, $ \alpha =\left(2{\mu }_{0}{R}_{0}{q}^{2}{\mathrm{d}}p\right)/\left({B}^{2}{\mathrm{d}}r\right) $.

    图 6  LHW驱动的不同大小$ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $对ELMsize时间演化的影响​, 插图为0—75$ {\tau }_{{\mathrm{A}}} $时刻的放大

    Fig. 6.  Influence of different $ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $ driven by LHW on the time evolution of ELMsize, The inset in the lower right corner is an enlargement of the from 0 to 75$ {\tau }_{{\mathrm{A}}} $.

    图 7  P-B模非线性模式演化(红色虚线为ELMsize) (a)初始平衡; (b) JLHW = 0.2 MA; (c) JLHW = 0.3 MA; (d) JLHW = 0.4 MA

    Fig. 7.  Temporal evolutions of the P-B mode spectrum: (a) Original equilibrium; (b) JLHW = 0.2 MA ; (c) JLHW = 0.3 MA; (d) JLHW = 0.4 MA. The red dashed line represents ELMsize.

    图 8  不同大小HCF产生的$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $对ELMsize随时间演化的影响

    Fig. 8.  Influence of $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $​ generated by different amplitudes of HCF on the time evolution of ELMsize.

    图 9  P-B模非线性模式演化, 分别对应未加入$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ (a), 以及300 A HCF (b), 450 A HCF (c), 600 A HCF (d) 产生的$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $下的模拟, 图中红色虚线为ELMsize

    Fig. 9.  Temporal evolutions of the P-B mode spectrum, for cases without $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ (a) and with $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ generated by 300 A HCF (b), 450 A HCF (c), 600 A HCF (d). The red dashed line represents ELMsize.

    图 10  环向平均的$ E\times B $剪切流随时间的演化, 分别为未加入$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $(a) 以及加入300 A HCF (b), 450 A HCF (c), 600 A HCF (d). 图中白色虚线为$ \psi =1 $的位置, 红色虚线为平衡压强梯度最大位置$ \psi =0.871 $

    Fig. 10.  Temporal evolutions of the toroidal averaged $ E\times B $ shear flow, for cases without $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ (a) and with $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ generated by 300 A HCF (b), 450 A HCF (c), 600 A HCF (d). The white and red dashed lines represent locations of $ \psi =1 $ and the maximum pressure gradient location $ \psi =0.871 $, respectively.

    图 11  不同$ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $电流条件下600 A HCF对ELMsize时间演化的影响

    Fig. 11.  Influence of 600 A HCF on the time evolution of ELMsize under different $ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $ current conditions.

    图 12  考虑HCF后的P-B模谱结构随时间的演化, 其中, 从上到下依次为初始平衡(a), (b); JLHW = 0.2 MA (c), (d); JLHW = 0.3 MA (e), (f); JLHW = 0.4 MA (g), (h)下的平衡. 左侧的一列(a), (c), (e), (g)为未加入$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $的模拟; 右侧(b), (d), (f), (h)为加入600 A HCF产生的$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $的模拟

    Fig. 12.  Temporal evolutions of the P-B mode spectrum structure considering HCF. From top to bottom, the sequences are the orginal equilibrium (a), (b); equilibrium with JLHW = 0.2 MA (c), (d); JLHW = 0.3 MA (e), (f); JLHW = 0.4 MA (g), (h), respectively. The left column (a), (c), (e), (g) represent cases without $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $; the right column (b), (d), (f), (h) represent cases with $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ from 600 A HCF.

  • [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [2]

    Leonard A W 2014 Phys. Plasmas 21 090501Google Scholar

    [3]

    Loarte A, Saibene G, Sartori R, et al. 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [4]

    Lang P T, Loarte A, Saibene G, et al. 2013 Nucl. Fusion 53 043004Google Scholar

    [5]

    Loarte A, Huijsmans G, Futatani S, et al. 2014 Nucl. Fusion 54 033007Google Scholar

    [6]

    Hughes J W, Hubbard A E, Wallace G, et al. 2010 Nucl. Fusion 50 064001Google Scholar

    [7]

    Wan B, Li J, Guo H, Liang Y, Xu G, Gong X Z for the EAST Team, International Collaborators 2013 Nucl. Fusion 53 104006Google Scholar

    [8]

    Rossel J X, Moret J M, Coda S, Sauter O, Goodman T P, Felici F, Testa D, Martin Y 2012 Nucl. Fusion 52 032004Google Scholar

    [9]

    Felici F, Rossel J X, Duval B P, Coda S, Goodman T P, Martin Y, Moret J M, Sauter O, the TCV Team 2013 Nucl. Fusion 53 113018Google Scholar

    [10]

    Baylor L R, Commaux N, Jernigan T C, et al. 2013 Phys. Rev. Lett. 110 245001Google Scholar

    [11]

    Chen S Y, Huang J, Sun T T, Wang Z H, Tang C J 2014 Phys. Plasmas 21 112512Google Scholar

    [12]

    Evans T E, Moyer R A, Watkins J G, et al. 2005 J. Nucl. Mater. 337–339 691Google Scholar

    [13]

    Canik J M, Maingi R, Evans T E, et al. 2010 Nucl. Fusion 50 034012Google Scholar

    [14]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [15]

    Huang J, Chen S Y, Wang Z H, Tang C J 2015 Phys. Plasmas 22 122507Google Scholar

    [16]

    Degeling A W, Martin Y R, Lister J B, Villard L, Dokouka V N, Lukash V E, Khayrutdinov R R 2003 Plasma Phys. Control. Fusion 45 1637Google Scholar

    [17]

    Wu N, Chen S Y, Song X M, Mou M L, Huang J, Wang Z T, Tang C J, Song X, Xia F, Jiang M, HL-2A Team 2017 Phys. Plasmas 24 092507Google Scholar

    [18]

    Zhang H M, Wu J, Li J X, Yao L M, Xu J C, Wu Y Z, Liu Q Y, Guo P C 2021 Acta Phys. Sin. 70 235203Google Scholar

    [19]

    刘冠男, 李新霞, 刘洪波, 孙爱萍 2023 物理学报 72 245202Google Scholar

    Liu G N, Li X X, Liu H B, Sun A P 2023 Acta Phys. Sin. 72 245202Google Scholar

    [20]

    Zhou T T, Xiang N, Gan C Y, Jia G Z, Chen J L 2022 Chin. Phys. B 31 095201Google Scholar

    [21]

    Xu Z, Wu Z W, Zhang L, Huang Y H, Gao W, Cheng Y X, Lin X D, Gao X, Chen Y J, Li L, Jie Y X, Zang Q, Liu H Q, EAST Team 2021 Chin. Phys. B 30 075205Google Scholar

    [22]

    Liang Y, Gong X Z, Gan K F, et al. 2013 Phys. Rev. Lett. 110 235002Google Scholar

    [23]

    Xiao G L, Zhong W L, Zou X L, et al. 2017 Phys. Plasmas 24 122507Google Scholar

    [24]

    Cui B T, Ji X Q, Sun T F, Liang S Y, Zhang J Z, Wang A, He M Y 2021 Fusion Eng. Des. 173 112963Google Scholar

    [25]

    Li S H, Wang N C, Ding Y H, et al. 2022 Plasma Phys. Control. Fusion 64 075005Google Scholar

    [26]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [27]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commun. 24 377Google Scholar

    [28]

    Pankin A Y, Bateman G, Brennan D P, Kritz A H, Kruger S, Snyder P B, Sovinec C, the NIMROD Team 2007 Plasma Phys. Control. Fusion 49 S63Google Scholar

    [29]

    Pamela S J P, Huijsmans G T A, Eich T, et al. 2017 Nucl. Fusion 57 076006Google Scholar

    [30]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [31]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [32]

    Xia T Y, Xu X Q 2013 Phys. Plasmas 20 052102Google Scholar

    [33]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [34]

    Mou M L, Huang J, Wu N, Chen S Y, Tang C J 2016 Phys. Lett. A 380 2544Google Scholar

    [35]

    Dong L K, Chen S Y, Mou M L, Tang C J 2020 Plasma Sci. Technol. 22 115101Google Scholar

    [36]

    Huang J, Chen S Y, Tang C J 2016 Phys. Plasmas 23 052513Google Scholar

    [37]

    Xia T Y, Gui B, Huang Y Q, Wu Y B, Xiao X T, EAST Team 2019 Nucl. Fusion 59 076043Google Scholar

    [38]

    Shi Y J, Xu G S, Wang F D, et al. 2011 Phys. Rev. Lett. 106 235001Google Scholar

    [39]

    Rice J E, Podpaly Y A, Reinke M L, et al. 2013 Nucl. Fusion 53 093015Google Scholar

    [40]

    Chouli B, Fenzi C, Garbet X, et al. 2014 Plasma Phys. Control. Fusion 56 095018Google Scholar

    [41]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [42]

    Fisch N J, Rax J M 1992 Phys. Rev. Lett. 69 612Google Scholar

    [43]

    Smirnov A P, Harvey R W 2001 The GENRAY Ray Tracing Code CompX Report No. CompX-2000-01

    [44]

    Ehst D A, Karney C F F 1991 Nucl. Fusion 31 1933Google Scholar

    [45]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 CORSICA: A Comprehensive Simulation of Toroidal Magnetic-fusion Devices. Final Report to the LDRD Program (Livermore: Lawrence Livermore National Lab.) Report No: UCRL-ID-126284

    [46]

    Xu X Q, Ma J F, Li G Q 2014 Phys. Plasmas 21 120704Google Scholar

    [47]

    Burrell K H 1997 Phys. Plasmas 4 1499Google Scholar

    [48]

    Ding B J, Bonoli P T, Tuccillo A, et al. 2018 Nucl. Fusion 58 095003Google Scholar

    [49]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [50]

    Zhang Y, Huang J, Chen S Y, Tang C J 2017 Phys. Plasmas 24 062108Google Scholar

    [51]

    Li J, Guo H Y, Wan B N, et al. 2013 Nat. Phys. 9 817Google Scholar

    [52]

    Dong L K, Chen S Y, Mou M L, Luo Y, Qin C C, Tang C J 2023 Nucl. Fusion 63 086023Google Scholar

    [53]

    Liu Y, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y, Suttrop W, Yang X, Zhou L 2016 Plasma Phys. Control. Fusion 58 114005Google Scholar

    [54]

    Oyama N, Sakamoto Y, Isayama A, et al. 2005 Nucl. Fusion 45 871Google Scholar

    [55]

    Aiba N, Giroud C, Honda M, et al. 2017 Nucl. Fusion 57 126001Google Scholar

    [56]

    Luo Y, Chen S Y, Huang J, Xiong Y Y, Tang C J 2016 Phys. Plasmas 23 042302Google Scholar

    [57]

    Xi P W, Xu X Q, Wang X G, Xia T Y 2012 Phys. Plasmas 19 092503Google Scholar

    [58]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

  • [1] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用. 物理学报, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动. 物理学报, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] 秦晨晨, 牟茂淋, 陈少永. 负三角形变位型下剥离气球模的非线性演化特征. 物理学报, 2023, 72(4): 045203. doi: 10.7498/aps.72.20222138
    [4] 孙梓源, 王元震, 刘悦. 预测HL-2A托卡马克台基结构的MHD稳定性数值研究. 物理学报, 2022, 71(22): 225201. doi: 10.7498/aps.71.20221098
    [5] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [6] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [7] 杨友磊, 胡业民, 项农. 捕获电子对低杂波与电子回旋波的协同效应的影响. 物理学报, 2017, 66(24): 245202. doi: 10.7498/aps.66.245202
    [8] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [9] 徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江, Sanggon Lee, M. Bitter, K. Hill. EAST装置锂化壁下低杂波等离子体温度行为研究. 物理学报, 2012, 61(14): 145203. doi: 10.7498/aps.61.145203
    [10] 刘春华, 聂林, 黄渊, 季小全, 余德良, 刘仪, 冯震, 姚可, 崔正英, 严龙文, 丁玄同, 董家齐, 段旭如. HL-2A托卡马克上的边缘局域模特性初步研究. 物理学报, 2012, 61(20): 205201. doi: 10.7498/aps.61.205201
    [11] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [12] 卢洪伟, 胡立群, 周瑞杰, 许平, 钟国强, 林士耀, 王少锋. HT-7 Tokamak离子回旋波和低杂波等离子体逃逸电子行为研究. 物理学报, 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [13] 李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐旵东. 利用低杂波改善约束的实验研究. 物理学报, 2000, 49(12): 2414-2419. doi: 10.7498/aps.49.2414
    [14] 黄荣, 邓传宝, 谢纪康, 钟方川, 汪舒娅, 张守银, 赵君煜. 低杂波驱动电流改善等离子体约束的光谱测量. 物理学报, 1994, 43(3): 395-403. doi: 10.7498/aps.43.395
    [15] 沈林放, 俞国扬. 离子迴旋共振加热对低杂波电流驱动的影响. 物理学报, 1992, 41(4): 587-593. doi: 10.7498/aps.41.587
    [16] 汪茂泉. 流动等离子体对托卡马克中撕裂模的影响. 物理学报, 1986, 35(9): 1227-1232. doi: 10.7498/aps.35.1227
    [17] 潘传红, 丁厚昌, 吴灵桥. 耗散气球模动力理论. 物理学报, 1986, 35(11): 1411-1425. doi: 10.7498/aps.35.1411
    [18] 陈雁萍, 张淳沅. 粒子轨道损失对低杂波离子随机加热的影响. 物理学报, 1984, 33(4): 457-464. doi: 10.7498/aps.33.457
    [19] 董家齐. 有磁辫等离子体的双撕裂模研究. 物理学报, 1984, 33(10): 1341-1349. doi: 10.7498/aps.33.1341
    [20] 石秉仁. 环流器等离子体高n气球模的第二稳定区. 物理学报, 1983, 32(11): 1398-1406. doi: 10.7498/aps.32.1398
计量
  • 文章访问数:  954
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-03-04
  • 上网日期:  2024-03-19
  • 刊出日期:  2024-05-05

/

返回文章
返回