搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东方超环上低杂波驱动等离子体环向旋转实验研究

杨进 陈俊 王福地 李颖颖 吕波 向东 尹相辉 张洪明 符佳 刘海庆 臧庆 储宇奇 刘建文 王勋禺 宾斌 何梁 万顺宽 龚学余 叶民友

引用本文:
Citation:

东方超环上低杂波驱动等离子体环向旋转实验研究

杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友

Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak

Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lyu Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You
PDF
HTML
导出引用
  • 旋转和旋转剪切能抑制磁流体不稳定性和增强等离子体约束. 低杂波电流驱动作为未来聚变堆上可能的旋转驱动手段, 探索低杂波在现有托卡马克装置上驱动等离子体旋转的驱动机制, 可以为未来的聚变堆上旋转预测提供重要参考. 在东方超环托卡马克装置上, 早期发现了2.45 GHz的低杂波能有效驱动等离子体旋转的现象, 认为是边界旋转的改变导致芯部旋转的同电流方向的增加造成的. 更高频率下4.6 GHz低杂波电流驱动可以更有效地驱动同电流方向的等离子体旋转. 本论文分析在欧姆背景等离子体下, 不同功率的低杂波对等离子体环向旋转的影响, 研究安全因子剖面变化对环向旋转的关系, 利用功率调制获得了低杂波驱动旋转实验中的环向动量输运系数变化情况, 发现环向动量扩散系数(χφ)、环向动量箍缩系数(Vpinch)的数值大小趋势是从芯部向靠外的区域逐渐变大. 这与低杂波驱动环向旋转时, 环向旋转速度由靠外的区域向芯部传递的特性吻合.
    Rotation and its shear can reduce the magnetohydrodynamic instabilities and enhance the confinement. The LHCD has been proposed as a possible means of rotation driving on a future fusion reactor. Exploring the mechanisms of LHCD rotation driving on the current tokamaks can provide important reference for future reactors. On EAST, it was previously shown that 2.45 GHz LHCD can drive plasma toroidal rotation and the change of edge plasma rotation leads the co-current core rotation to increase. At higher frequency, 4.6 GHz lower hybrid wave can more effectively drive co-current plasma toroidal rotation. On EAST, at the lower current, the effects of different LHCD power on plasma toroidal rotation are analyzed. Higher power LHCD has a better driving efficiency. The effect of safety factor (q) profile on toroidal rotation is also presented. The LHCD can change the profile of safety factor due to current drive. It is found that when the power exceeds 1.4MW, the q profile remains unchanged and the rotation changes only very slightly with LHCD power, suggesting that the current profile is closely related to rotation. In order to further analyze the dynamic process of plasma toroidal rotation driven by lower hybrid current drive on EAST, the toroidal momentum transport due to LHCD is deduced by using the modulated LHCD power injection. Based on the momentum balance equation, the toroidal momentum diffusion coefficient (χφ) and the toroidal momentum pinch coefficient (Vpinch) are obtained by the method of separation of variables and Fourier analysis for the region where the external momentum source can be ignored. It is found that the momentum diffusion coefficient (χφ) and momentum pinch coefficient (Vpinch) tend to increase from the core to the outer region. This is consistent with the characteristic that the toroidal rotation velocity first changes in the outer region and then propagates to the core when the toroidal rotation is driven by LHCD.
      通信作者: 吕波, blu@ipp.ac.cn ; 向东, xiangdong007@163.com
    • 基金项目: 省部级-安徽省自然科学杰出青年基金(1908085J01)
      Corresponding author: Lyu Bo, blu@ipp.ac.cn ; Xiang Dong, xiangdong007@163.com
    [1]

    Betti R, Freidberg J P 1995 Phys. Rev. Lett. 74 2949Google Scholar

    [2]

    Rice J E, Podpaly Y A, Reinke M L, Gao C, Shiraiwa S, Terry J L, Theiler C, Wallace G M, Bonoli P T, Brunner D 2013 Nucl. Fusion. 53 093015Google Scholar

    [3]

    Rice J E, Gao C, Mumgaard R, et al. 2016 Nucl. Fusion. 56 036015Google Scholar

    [4]

    Chouli B, Fenzi C, Garbet X, et al. 2014 Plasma Phys. Controlled Fusion. 56 095018Google Scholar

    [5]

    Chouli B, Fenzi C, Garbet X, Bourdelle C, Sarazin Y, Rice J, Aniel T, Artaud J F, Baiocchi B, Basiuk V, Cottier P, Decker J, Imbeaux F, Irishkin M, Mazon D, Schneider M, the Tore Supra Team 2015 Plasma Phys. Controlled Fusion. 57 125007Google Scholar

    [6]

    Shi Y, Xu G, Wang F, Wang M, Fu J, Li Y, Zhang W, Chang J, Lv B, Qian J, Shan J, Liu F, Ding S, Wan B, Lee S G, Bitter M, Hill K 2011 Phys. Rev. Lett. 106 235001Google Scholar

    [7]

    Yin X H, Chen J, Hu R J, Yi Y Y, Wang F D, Fu J, Ding B J, Wang M, Liu F K, Zang Q, Shi Y J, Lyu B, Wan B N, the EAST team 2017 Chin. Phys. B 26 115203Google Scholar

    [8]

    Koide Y, Tuda T, Ushigusa K, Asakura N, Sakasai A, Ide S, Ishida S, Kikuchi M, Azumi M, Funahashi A 1992 Plasma Phys. Control. Nucl. Fusion. Res. 1 777

    [9]

    Eriksson L G, Hellsten T, Nave F, Brzozowski J, Holmström K, Johnson T, Ongena J, Zastrow K D 2009 Plasma Phys. Controlled Fusion. 51 044008Google Scholar

    [10]

    Nave M F F, Kirov K, Bernardo J, Brix M, Ferreira J, Giroud C, Hawkes N, Hellsten T, Jonsson T, Mailloux J, Ongena J, Parra F, JET Contributors 2017 Nucl. Fusion. 57 034002Google Scholar

    [11]

    Wan B N, Liang Y F, Gong X Z, Li J G, Xiang N, Xu G S, Sun Y W, Wang L, Qian J P, Liu H Q, Zhang X D, Hu L Q, Hu J S, Liu F K, Hu C D, Zhao Y P, Zeng L, Wang M, Xu H D, Luo G N 2017 Nucl. Fusion. 57 102019Google Scholar

    [12]

    Ding B J, Li Y C, Zhang L, et al. 2015 Nucl. Fusion. 55 093030Google Scholar

    [13]

    Lyu B, Wang F D, Pan X Y, et al. 2014 Rev. Sci. Instruments. 85 11E406Google Scholar

    [14]

    Lyu B, Chen J, Hu R J, et al. 2016 Rev. Sci. Instruments. 87 11E326Google Scholar

    [15]

    Lyu B, Chen J, Hu R J, et al. 2018 Rev. Sci. Instruments. 89 10F112Google Scholar

    [16]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M 2014 Rev. Sci. Instruments. 85 11E428Google Scholar

    [17]

    Rice J E, Ince-Cushman A, deGrassie J S, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K H, Duval B P, Fenzi-Bonizec C, Greenwald M J, Groebner R J, Hoang G T, Koide Y, Marmar E S, Pochelon A, Podpaly Y 2007 Nucl. Fusion. 47 1618Google Scholar

    [18]

    Liu H Q, Qian J P, Jie Y X, et al. 2016 Rev. Sci. Instruments. 87 11D903Google Scholar

    [19]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y and the JT-60 Team 2006 Plasma Phys. Control. Fusion. 48 1673Google Scholar

    [20]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Matsunaga G, Kamada Y and the JT-60U Team 2007 Nucl. Fusion. 47 856Google Scholar

    [21]

    Ida K, Miura Y, Itoh K, Itoh S I, Matsuda T 1998 J. Phys. Soc. Japan. 67 4089Google Scholar

  • 图 1  典型参数随时间变化的波形图 (#70938) (a) 等离子体电流 (黑色), 低杂波功率 (蓝色); (b) 环电压 (黑色)和内感 (蓝色); (c) 芯部弦平均电子密度; (d) 储能; (e) 芯部电子温度 (黑色)和芯部离子温度 (红色); (f) 芯部环向速度变化

    Fig. 1.  Waveforms of typical parameters of an LHCD shot (#70938) on EAST: (a) Plasma current (black) and LHCD power)(blue); (b) loop voltage (black) and internal inductance (blue); (c) central line averaged electron density; (d) stored energy; (e) central ion (red) and electron (black) temperature; (f) the change of core toroidal rotation velocity.

    图 2  不同低杂波功率下典型参数随时间变化的波形图 (a) 等离子体电流; (b) 芯部弦平均电子密度; (c) 低杂波功率; (d) 芯部环向旋转速度变化

    Fig. 2.  Waveforms of typical parameters at different LHCD power levels: (a) plasma current; (b) central line averaged electron density; (c) LHCD power; (d) the change of core toroidal rotation velocity.

    图 3  低杂波功率与芯部环向旋转速度变化关系

    Fig. 3.  The relationship between the change of core toroidal rotation velocity and LHCD power.

    图 4  不同低杂波驱动功率下安全因子剖面

    Fig. 4.  Profiles of safety factor at different LHCD powers.

    图 5  典型参数随时间变化的波形图 (a) 电子温度; (b) 离子温度; (c) 环向旋转速度对调制束的响应; (d) LHCD功率(黑色)和芯部弦平均电子密度(蓝色)

    Fig. 5.  Waveforms of typical parameters: (a) Electron temperature; (b) ion temperature; (c) toroidal rotation velocity; (d) LHCD power (black) and central line averaged electron density (blue).

    图 6  (a) 环向速度调制幅度(Vt0)的剖面图; (b) 环向速度相位变换(φ)的剖面图

    Fig. 6.  (a) Profile of toroidal velocity modulation amplitude; (b) profile of toroidal velocity phase transformation.

    图 7  (a) 环向动量扩散系数(χφ) 的剖面图; (b) 箍缩系数(Vpinch)的剖面图

    Fig. 7.  (a) Profile of toroidal momentum diffusion coefficient; (b) profile of toroidal momentum pinch coefficient.

  • [1]

    Betti R, Freidberg J P 1995 Phys. Rev. Lett. 74 2949Google Scholar

    [2]

    Rice J E, Podpaly Y A, Reinke M L, Gao C, Shiraiwa S, Terry J L, Theiler C, Wallace G M, Bonoli P T, Brunner D 2013 Nucl. Fusion. 53 093015Google Scholar

    [3]

    Rice J E, Gao C, Mumgaard R, et al. 2016 Nucl. Fusion. 56 036015Google Scholar

    [4]

    Chouli B, Fenzi C, Garbet X, et al. 2014 Plasma Phys. Controlled Fusion. 56 095018Google Scholar

    [5]

    Chouli B, Fenzi C, Garbet X, Bourdelle C, Sarazin Y, Rice J, Aniel T, Artaud J F, Baiocchi B, Basiuk V, Cottier P, Decker J, Imbeaux F, Irishkin M, Mazon D, Schneider M, the Tore Supra Team 2015 Plasma Phys. Controlled Fusion. 57 125007Google Scholar

    [6]

    Shi Y, Xu G, Wang F, Wang M, Fu J, Li Y, Zhang W, Chang J, Lv B, Qian J, Shan J, Liu F, Ding S, Wan B, Lee S G, Bitter M, Hill K 2011 Phys. Rev. Lett. 106 235001Google Scholar

    [7]

    Yin X H, Chen J, Hu R J, Yi Y Y, Wang F D, Fu J, Ding B J, Wang M, Liu F K, Zang Q, Shi Y J, Lyu B, Wan B N, the EAST team 2017 Chin. Phys. B 26 115203Google Scholar

    [8]

    Koide Y, Tuda T, Ushigusa K, Asakura N, Sakasai A, Ide S, Ishida S, Kikuchi M, Azumi M, Funahashi A 1992 Plasma Phys. Control. Nucl. Fusion. Res. 1 777

    [9]

    Eriksson L G, Hellsten T, Nave F, Brzozowski J, Holmström K, Johnson T, Ongena J, Zastrow K D 2009 Plasma Phys. Controlled Fusion. 51 044008Google Scholar

    [10]

    Nave M F F, Kirov K, Bernardo J, Brix M, Ferreira J, Giroud C, Hawkes N, Hellsten T, Jonsson T, Mailloux J, Ongena J, Parra F, JET Contributors 2017 Nucl. Fusion. 57 034002Google Scholar

    [11]

    Wan B N, Liang Y F, Gong X Z, Li J G, Xiang N, Xu G S, Sun Y W, Wang L, Qian J P, Liu H Q, Zhang X D, Hu L Q, Hu J S, Liu F K, Hu C D, Zhao Y P, Zeng L, Wang M, Xu H D, Luo G N 2017 Nucl. Fusion. 57 102019Google Scholar

    [12]

    Ding B J, Li Y C, Zhang L, et al. 2015 Nucl. Fusion. 55 093030Google Scholar

    [13]

    Lyu B, Wang F D, Pan X Y, et al. 2014 Rev. Sci. Instruments. 85 11E406Google Scholar

    [14]

    Lyu B, Chen J, Hu R J, et al. 2016 Rev. Sci. Instruments. 87 11E326Google Scholar

    [15]

    Lyu B, Chen J, Hu R J, et al. 2018 Rev. Sci. Instruments. 89 10F112Google Scholar

    [16]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M 2014 Rev. Sci. Instruments. 85 11E428Google Scholar

    [17]

    Rice J E, Ince-Cushman A, deGrassie J S, Eriksson L G, Sakamoto Y, Scarabosio A, Bortolon A, Burrell K H, Duval B P, Fenzi-Bonizec C, Greenwald M J, Groebner R J, Hoang G T, Koide Y, Marmar E S, Pochelon A, Podpaly Y 2007 Nucl. Fusion. 47 1618Google Scholar

    [18]

    Liu H Q, Qian J P, Jie Y X, et al. 2016 Rev. Sci. Instruments. 87 11D903Google Scholar

    [19]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Kamada Y and the JT-60 Team 2006 Plasma Phys. Control. Fusion. 48 1673Google Scholar

    [20]

    Yoshida M, Koide Y, Takenaga H, Urano H, Oyama N, Kamiya K, Sakamoto Y, Matsunaga G, Kamada Y and the JT-60U Team 2007 Nucl. Fusion. 47 856Google Scholar

    [21]

    Ida K, Miura Y, Itoh K, Itoh S I, Matsuda T 1998 J. Phys. Soc. Japan. 67 4089Google Scholar

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运. 物理学报, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动. 物理学报, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] 张汉谋, 肖发俊, 赵建林. 紧聚焦角向矢量光激发下硅环-开口金环纳米天线的单向散射. 物理学报, 2022, 71(13): 135201. doi: 10.7498/aps.71.20212212
    [4] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响. 物理学报, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [5] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [6] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [7] 梁芳营, 李汉明, 李英骏. 超导环电流的研究. 物理学报, 2006, 55(2): 830-833. doi: 10.7498/aps.55.830
    [8] 李印峰, 尹世忠, M. Vázquez. 非晶和纳米晶软磁丝状样品的环向磁化过程. 物理学报, 2005, 54(7): 3391-3396. doi: 10.7498/aps.54.3391
    [9] 焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟. 俘获电子效应对低杂波电流驱动的影响. 物理学报, 2005, 54(1): 180-185. doi: 10.7498/aps.54.180
    [10] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [11] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析. 物理学报, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
    [12] 刘才根, 钱尚介, 万华明. 电子回旋波驱动的托卡马克芯部等离子体极向旋转. 物理学报, 1998, 47(9): 1515-1519. doi: 10.7498/aps.47.1515
    [13] 黄荣, 邓传宝, 谢纪康, 钟方川, 汪舒娅, 张守银, 赵君煜. 低杂波驱动电流改善等离子体约束的光谱测量. 物理学报, 1994, 43(3): 395-403. doi: 10.7498/aps.43.395
    [14] 孟月东, 高翔, 范叔平, 李建刚, 罗家融, 童兴德, 张卫, 韩玉琴, 龚先祖, 蒋家广, 尹富先, 曾磊, 凌必利, 殷飞, 丁涟城, 张守银, 吴志勇, 吴明军. 利用环向电场提升等离子体电流以改善约束状态. 物理学报, 1994, 43(9): 1486-1494. doi: 10.7498/aps.43.1486
    [15] 项农, 俞国扬. HT-6B托卡马克参数下低杂波驱动电流的密度窗口. 物理学报, 1993, 42(5): 769-774. doi: 10.7498/aps.42.769
    [16] 沈林放, 俞国扬. 离子迴旋共振加热对低杂波电流驱动的影响. 物理学报, 1992, 41(4): 587-593. doi: 10.7498/aps.41.587
    [17] 夏蒙棼, 吴惟敏. 低杂波驱动的加速效应. 物理学报, 1989, 38(4): 619-628. doi: 10.7498/aps.38.619
    [18] 夏蒙棼. 低杂波驱动的共振电子径向能量输运. 物理学报, 1988, 37(8): 1381-1385. doi: 10.7498/aps.37.1381
    [19] 印永祥, 丁厚昌. 低杂波驱动电流在托卡马克中的分布. 物理学报, 1987, 36(2): 230-236. doi: 10.7498/aps.36.230
    [20] 张裕恒, 曹效文. 在Tokamak装置中用中空超导环段冻结环向磁场的设想. 物理学报, 1981, 30(3): 325-332. doi: 10.7498/aps.30.325
计量
  • 文章访问数:  6418
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-08
  • 修回日期:  2019-12-10
  • 刊出日期:  2020-03-05

/

返回文章
返回