搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子浓度及表面结构对岩石孔隙内水流动特性的影响

尹玉明 赵伶玲

引用本文:
Citation:

离子浓度及表面结构对岩石孔隙内水流动特性的影响

尹玉明, 赵伶玲

Effects of salt concentrations and pore surface structure on the water flow through rock nanopores

Yin Yu-Ming, Zhao Ling-Ling
PDF
HTML
导出引用
  • 酸性环境引发的岩石孔隙表面溶解增加了孔隙内水溶液的盐离子浓度, 破坏了孔隙的表面结构. 本文采用分子动力学模拟的方法研究了纳米级岩石孔隙内水溶液的流动特性, 分析了盐离子浓度和孔隙表面结构对水流速度分布的影响及原因. 研究结果表明: 纳米级岩石孔隙内的水溶液流动符合泊肃叶流动特性, 流速呈“抛物线”分布; 随盐离子浓度增加, 水溶液内部氢键网络变得更为致密, 水黏度随其呈线性增长; 水溶液中离子浓度越大, 孔隙表面对水流动的阻力越大, 最大流速越小, 速度分布的“抛物线”曲率半径越大; 岩石孔隙表面结构的破坏改变了流动表面的粗糙程度, 增加了孔隙表面对H2O分子的吸引力. 随表面结构破坏程度的增大, 水溶液在近壁区域的密度增大, 流速降低; 当表面破坏程度达到50%时, 水溶液在近壁区域出现了明显的负边界滑移现象.
    The surface dissolution of rock nanopores, caused by the acidic environment, increases the salt concentration of water solution flowing in the nanopores, thereby destroying the surface structure of the rock, which can be found in CO2 geological sequestration and crude oil and shale gas exploration. In this paper, the molecular dynamics method is adopted to study the flow characteristics of water solution in the forsterite (Mg2SiO4) slit nanopores, by which the effects of salt concentration and structure destruction of pore surface on the velocity profiles of water solution confined in nanopores are systematically analyzed. The hydrogen bond density, radial distribution function (RDF) and water density distribution are calculated to explain the changes in viscosity, velocity profiles and interaction between water and nanopore surface. The results show that as the salt concentration increases, the water solution flow in the rock nanopore obeys the Hagen-Poiseuille equation, and the velocity profiles of water solution remain parabolic shape. However, the hydrogen bond network among water molecules becomes denser with salt concentration increasing, which can account for the linear increase in the viscosity of water solution. Besides, the higher salt concentration gives rise to the larger water flow resistance from the pore surface. As a result, with the salt concentration increasing, the maximum of water velocity decreases and the curvature radius of the parabolic velocity profile curve becomes bigger. Moreover, the surface structure destruction in rock nanopores changes the roughness of surface in the flow channel, which enhances the attraction of nanopore surface to H2O. As the structure destruction of nanopore surface deteriorates, the water density near the rough surface moves upward, whereas the velocity of water near the rough surface declines obviously. Interestingly, when the degree of surface structure destruction reaches 50%, a significant negative boundary slipping near the rough surface appears.
      通信作者: 赵伶玲, zhao_lingling@seu.edu.cn
    • 基金项目: 国家级-scCO2-brine 多相流体在岩石孔隙内流动特性的研究(51776041)
      Corresponding author: Zhao Ling-Ling, zhao_lingling@seu.edu.cn
    [1]

    Schrag D P J 2007 Science 315 812Google Scholar

    [2]

    Liu B, Qi C, Zhao X, Teng G, Zhao L, Zheng H, Zhan K, Shi J 2018 J. Phys. Chem. C 122 26671Google Scholar

    [3]

    Cunningham A B, Gerlach R, Spangler L, Mitchell A C 2009 Energy Procedia. 1 3245Google Scholar

    [4]

    Pournik M, Nasr-El-Din H A, Mahmoud M A 2011 SPE Prod. Oper. 26 18

    [5]

    Li Z, Xu Y, Yang L, Guo J, Chen J J 2016 Aust. J. Earth. Sci. 63 503Google Scholar

    [6]

    Black J R, Carroll S A, Haese R R 2015 Chem. Geol. 399 134Google Scholar

    [7]

    黄桥高, 潘光, 宋保维 2014 物理学报 63 054701Google Scholar

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701Google Scholar

    [8]

    葛宋, 陈民 2013 工程热物理学报 34 1527

    Ge S, Chen M 2013 J. Eng. Therm. 34 1527

    [9]

    杨峰, 宁正福, 胡昌蓬, 王波, 彭凯, 刘慧卿 2013 石油学报 34 301Google Scholar

    Yang F, Ning Z F, Hu C P, Wang B, Peng K, Liu H Q 2013 Acta Petrol. Sin. 34 301Google Scholar

    [10]

    Eijkel J C, Van Den Berg A J M 2005 Microfluid. Nanofluid. 1 249Google Scholar

    [11]

    Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (Vol. 29) (Berlin: Springer Science & Business Media) pp13–15

    [12]

    Wang S, Javadpour F, Feng Q H 2016 Fuel. 181 741Google Scholar

    [13]

    Ho T A, Striolo A 2015 AIChE J. 61 2993Google Scholar

    [14]

    Marcus Y J 2009 Chem. Rev. 109 1346Google Scholar

    [15]

    Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H 2019 J. Am. Chem. Soc. 141 4264Google Scholar

    [16]

    van der Vegt N F, Haldrup K, Roke S, Zheng J, Lund M, Bakker H 2016 Chem. Rev. 116 7626Google Scholar

    [17]

    Aryal D, Ganesan V 2018 ACS Macro Lett. 7 739Google Scholar

    [18]

    杨倩 2018 博士学位论文 (成都: 西南交通大学)

    Yang Q 2018 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [19]

    张烨, 张冉, 常青, 李烨 2019 物理学报 68 124702Google Scholar

    Zhang Y, Zhang R, Chang Q, Li H, 2019 Acta Phys. Sin. 68 124702Google Scholar

    [20]

    Rahmatipour H, Azimian A-R, Atlaschian O 2017 Physica A 465 159Google Scholar

    [21]

    梅涛, 陈独秀, 杨历, 王坤, 苗瑞灿 2019 物理学报 68 094701Google Scholar

    Mei T, Chen D X, Yang L, Wang K, Miao C C, 2019 Acta Phys. Sin. 68 094701Google Scholar

    [22]

    南怡伶, 孔宪, 李继鹏, 卢滇楠 2017 化工学报 68 1786

    Nan Y L, Kong X, Li J P, Lu D N 2017 J. Chem. Ind. Eng. (China) 68 1786

    [23]

    王胜, 徐进良, 张龙艳 2017 物理学报 66 204704Google Scholar

    Wang S, Xu J L, Zhang L Y 2017 Acta Phys. Sin. 66 204704Google Scholar

    [24]

    张冉, 谢文佳, 常青 2018 物理学报 67 084701Google Scholar

    Zhang R, Xie W J, Chang Q 2018 Acta Phys. Sin. 67 084701Google Scholar

    [25]

    Markesteijn A, Hartkamp R, Luding S, Westerweel J 2012 J. Chem. Phys 136 134104Google Scholar

    [26]

    Yoshida H, Bocquet L 2016 J. Chem. Phys 144 234701Google Scholar

    [27]

    Xu J, Zhu C, Wang Y, Li H, Huang Y, Shen Y, Francisco J S, Zeng X C, Meng S 2019 Nano Res. 12 587Google Scholar

    [28]

    Nair R, Wu H, Jayaram P, Grigorieva I, Geim A 2012 Science 335 442Google Scholar

    [29]

    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979Google Scholar

    [30]

    Zhao L L, Ji J, Tao L, Lin S C 2016 Langmuir. 32 9188Google Scholar

    [31]

    Ross D J K, Bustin R M 2009 Mar. Pet. Geol. 26 916Google Scholar

    [32]

    Kerisit S, Weare J H, Felmy A R 2012 Geochim. Cosmochim. Acta 84 137Google Scholar

    [33]

    Wang J, Kalinichev A G, Kirkpatrick R J 2006 Geochim. Cosmochim. Acta 70 562Google Scholar

    [34]

    Cygan R T, Liang J-J, Kalinichev A G 2004 J. Phys. Chem. B. 108 1255Google Scholar

    [35]

    Yuet P K, Blankschtein D 2010 J. Phys. Chem. B 114 13786Google Scholar

    [36]

    Zhao L, Lin S, Mendenhall J D, Yuet P K, Blankschtein D 2011 J. Phys. Chem. B 115 6076Google Scholar

    [37]

    Verlet L 1967 Phys. Rev. 159 98Google Scholar

    [38]

    Delhommelle J, Philippe M 2001 Mol. Phys. 99 619Google Scholar

    [39]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089Google Scholar

    [40]

    FrantzDale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205Google Scholar

    [41]

    Alvarez N J, Uguz A K 2013 Phys. Fluids 25 7336

    [42]

    Span R, Wagner W J 1996 J. Phys. Chem. Ref. Data 25 1509Google Scholar

    [43]

    Liu L, Du J G, Zhao J J, Liu H, Gao H L, Chen Y X 2009 Phys. Earth Planet. 176 89Google Scholar

  • 图 1  纳米级镁橄榄石孔隙内水溶液流动的模拟系统图

    Fig. 1.  The simulation system of water solution flow in the forsterite nanopore.

    图 2  Mg2SiO4晶体拉伸的分子模拟应力-应变曲线

    Fig. 2.  The stress-strain curves of the Mg2SiO4 crystal stretching obtained using molecular dynamics simulation.

    图 3  (a)纯水和MgCl2含盐水中以0.32 nm半径的水合壳结构示意图; (b)不同MgCl2浓度下纳米级镁橄榄石孔隙内纯水和含盐水的+Z向速度分布

    Fig. 3.  (a) Snapshots for the solvation shell with a radius of 0.4 nm in pure water and MgCl2 solution, (b) the velocity profiles in the +Z direction of water solution in the forsterite nanopore with different MgCl2 concentrations.

    图 4  (a)不同MgCl2浓度含盐水的黏度及其内部氢键密度; (b)不同MgCl2浓度含盐水Ow-Ow原子对的径向分布函数

    Fig. 4.  (a) The viscosity and hydrogen bond density of water solution with different MgCl2 concentrations; (b) the radial distribution function of Ow-Ow near the wall of nanopores.

    图 5  Mg-Ow原子对的径向分布函数

    Fig. 5.  The radial distribution function of Mg-Ow near the wall of nanopores.

    图 6  不同表面结构破坏程度的纳米级镁橄榄石孔隙示意图

    Fig. 6.  The schematic of forsterite nanopores with various degrees of surface structure destruction.

    图 7  不同表面结构破坏程度下纳米级镁橄榄石孔隙内水的+Z向速度分布

    Fig. 7.  The velocity profiles in the +Z direction of water solution in forsterite nanopores with various degrees of surface structure destruction.

    图 8  不同表面结构破坏程度下纳米级镁橄榄石孔隙内水溶液的密度分布

    Fig. 8.  The density profiles of water solution in forsterite nanopores with various degrees of surface structure destruction.

  • [1]

    Schrag D P J 2007 Science 315 812Google Scholar

    [2]

    Liu B, Qi C, Zhao X, Teng G, Zhao L, Zheng H, Zhan K, Shi J 2018 J. Phys. Chem. C 122 26671Google Scholar

    [3]

    Cunningham A B, Gerlach R, Spangler L, Mitchell A C 2009 Energy Procedia. 1 3245Google Scholar

    [4]

    Pournik M, Nasr-El-Din H A, Mahmoud M A 2011 SPE Prod. Oper. 26 18

    [5]

    Li Z, Xu Y, Yang L, Guo J, Chen J J 2016 Aust. J. Earth. Sci. 63 503Google Scholar

    [6]

    Black J R, Carroll S A, Haese R R 2015 Chem. Geol. 399 134Google Scholar

    [7]

    黄桥高, 潘光, 宋保维 2014 物理学报 63 054701Google Scholar

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701Google Scholar

    [8]

    葛宋, 陈民 2013 工程热物理学报 34 1527

    Ge S, Chen M 2013 J. Eng. Therm. 34 1527

    [9]

    杨峰, 宁正福, 胡昌蓬, 王波, 彭凯, 刘慧卿 2013 石油学报 34 301Google Scholar

    Yang F, Ning Z F, Hu C P, Wang B, Peng K, Liu H Q 2013 Acta Petrol. Sin. 34 301Google Scholar

    [10]

    Eijkel J C, Van Den Berg A J M 2005 Microfluid. Nanofluid. 1 249Google Scholar

    [11]

    Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (Vol. 29) (Berlin: Springer Science & Business Media) pp13–15

    [12]

    Wang S, Javadpour F, Feng Q H 2016 Fuel. 181 741Google Scholar

    [13]

    Ho T A, Striolo A 2015 AIChE J. 61 2993Google Scholar

    [14]

    Marcus Y J 2009 Chem. Rev. 109 1346Google Scholar

    [15]

    Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H 2019 J. Am. Chem. Soc. 141 4264Google Scholar

    [16]

    van der Vegt N F, Haldrup K, Roke S, Zheng J, Lund M, Bakker H 2016 Chem. Rev. 116 7626Google Scholar

    [17]

    Aryal D, Ganesan V 2018 ACS Macro Lett. 7 739Google Scholar

    [18]

    杨倩 2018 博士学位论文 (成都: 西南交通大学)

    Yang Q 2018 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [19]

    张烨, 张冉, 常青, 李烨 2019 物理学报 68 124702Google Scholar

    Zhang Y, Zhang R, Chang Q, Li H, 2019 Acta Phys. Sin. 68 124702Google Scholar

    [20]

    Rahmatipour H, Azimian A-R, Atlaschian O 2017 Physica A 465 159Google Scholar

    [21]

    梅涛, 陈独秀, 杨历, 王坤, 苗瑞灿 2019 物理学报 68 094701Google Scholar

    Mei T, Chen D X, Yang L, Wang K, Miao C C, 2019 Acta Phys. Sin. 68 094701Google Scholar

    [22]

    南怡伶, 孔宪, 李继鹏, 卢滇楠 2017 化工学报 68 1786

    Nan Y L, Kong X, Li J P, Lu D N 2017 J. Chem. Ind. Eng. (China) 68 1786

    [23]

    王胜, 徐进良, 张龙艳 2017 物理学报 66 204704Google Scholar

    Wang S, Xu J L, Zhang L Y 2017 Acta Phys. Sin. 66 204704Google Scholar

    [24]

    张冉, 谢文佳, 常青 2018 物理学报 67 084701Google Scholar

    Zhang R, Xie W J, Chang Q 2018 Acta Phys. Sin. 67 084701Google Scholar

    [25]

    Markesteijn A, Hartkamp R, Luding S, Westerweel J 2012 J. Chem. Phys 136 134104Google Scholar

    [26]

    Yoshida H, Bocquet L 2016 J. Chem. Phys 144 234701Google Scholar

    [27]

    Xu J, Zhu C, Wang Y, Li H, Huang Y, Shen Y, Francisco J S, Zeng X C, Meng S 2019 Nano Res. 12 587Google Scholar

    [28]

    Nair R, Wu H, Jayaram P, Grigorieva I, Geim A 2012 Science 335 442Google Scholar

    [29]

    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979Google Scholar

    [30]

    Zhao L L, Ji J, Tao L, Lin S C 2016 Langmuir. 32 9188Google Scholar

    [31]

    Ross D J K, Bustin R M 2009 Mar. Pet. Geol. 26 916Google Scholar

    [32]

    Kerisit S, Weare J H, Felmy A R 2012 Geochim. Cosmochim. Acta 84 137Google Scholar

    [33]

    Wang J, Kalinichev A G, Kirkpatrick R J 2006 Geochim. Cosmochim. Acta 70 562Google Scholar

    [34]

    Cygan R T, Liang J-J, Kalinichev A G 2004 J. Phys. Chem. B. 108 1255Google Scholar

    [35]

    Yuet P K, Blankschtein D 2010 J. Phys. Chem. B 114 13786Google Scholar

    [36]

    Zhao L, Lin S, Mendenhall J D, Yuet P K, Blankschtein D 2011 J. Phys. Chem. B 115 6076Google Scholar

    [37]

    Verlet L 1967 Phys. Rev. 159 98Google Scholar

    [38]

    Delhommelle J, Philippe M 2001 Mol. Phys. 99 619Google Scholar

    [39]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089Google Scholar

    [40]

    FrantzDale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205Google Scholar

    [41]

    Alvarez N J, Uguz A K 2013 Phys. Fluids 25 7336

    [42]

    Span R, Wagner W J 1996 J. Phys. Chem. Ref. Data 25 1509Google Scholar

    [43]

    Liu L, Du J G, Zhao J J, Liu H, Gao H L, Chen Y X 2009 Phys. Earth Planet. 176 89Google Scholar

  • [1] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓. 不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟. 物理学报, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [2] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [3] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [6] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [7] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [8] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [9] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [10] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [12] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [13] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [14] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [15] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [16] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [17] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [18] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [19] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  6815
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2019-12-23
  • 刊出日期:  2020-03-05

/

返回文章
返回