搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆柱型光纤螺线圈轨道角动量模式

赵超樱 范钰婷 孟义朝 郭奇志 谭维翰

引用本文:
Citation:

圆柱型光纤螺线圈轨道角动量模式

赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰

Orbital angular momentum mode of cylindrical spiral wave-guide

Zhao Chao-Ying, Fan Yu-Ting, Meng Yi-Chao, Guo Qi-Zhi, Tan Wei-Han
PDF
HTML
导出引用
  • 传统的沿z轴光纤传输光线的轨道角动量(orbital angular momentum, OAM)光束的制备方法共同之处都是从内部结构着想, 光束的主光线基本上不变, 只是波面在变. 但要获得携带高$m\hbar $的光有一定的难度. 针对上述问题, 本文建立以波面不变, 光束主光线变化为基础的理论框架, 利用微分几何理论验证不沿z轴圆柱型光纤螺线圈传输的光线可以携带高$m\hbar $ OAM的理论设想. 研究发现: 利用流动坐标$(\alpha ,\beta ,\gamma )$计算光线在绕圆柱体的光纤中传输时光纤截面的衍射分布图呈现涡旋特征, 有高阶OAM模式. 当$\theta = {\theta _0}$时, 圆柱形轨道光纤过渡到直线轨道光纤. 计算光线沿直线传输时光纤截面的衍射分布图是Airy斑, 即圆孔衍射斑, 无高阶OAM模式.
    The common feature of traditional methods of preparing orbital angular momentum (OAM) light beams propagating along the z axis is that the wave-front phase is changed and the chief ray of beam is basically unchanged. But it is difficult to obtain a high $m\hbar $ OAM. To solve the above problem, we establish a theoretical framework based on the change of the chief ray of beam instead of the change of wave-front phase. The differential geometry theory is used to verify the theoretical assumption that the light transmitted by the cylindrical spiral wave-guide can carry high $m\hbar $ OAM. To measure the OAM optical fiber output, we use the diffraction method to detect the phase of vortex, that is, we can use a microscope to observe the phase distribution of optical fiber end face. We consider the output of linearly polarized light along the tangent direction of the fiber to observe its diffraction pattern. The transmission of optical fiber around the cylinder is the main light. The diameter of optical fiber is constant, and the light wave transmitting into the optical fiber is Bessel beam. For the linear fiber output, we need to consider only the linear fiber Bessel beam. The output cross section of the wave surface in the fiber is approximately that of plane wave. When $\theta > {\theta _0}$, we use the flow coordinates $(\alpha,\beta, \gamma)$ to calculate the diffraction pattern of the cross section of the optical fiber when light travels in the optical fiber around the cylinder, which shows the characteristics of vortex. The optical field distribution carries a high-order OAM mode. When $\theta = {\theta _0}$, cylindrical orbital optical fibers transit to linear orbital optical fibers. We calculate the diffraction pattern of the cross section of the optical fibers propagating in a straight line. It is an Airy spot, namely a circular aperture diffraction spot. The optical field distribution has no higher-order OAM mode. When the order of the output beam is small, the output shows certain uniformity and symmetry, when the order of the output beam increases gradually, the output beam shows some inhomogeneity and asymmetry.
      通信作者: 赵超樱, zchy49@hdu.edu.cn
    • 基金项目: 国家级-基于雪崩电离的磁阻效应及其机理研究(11504074)
      Corresponding author: Zhao Chao-Ying, zchy49@hdu.edu.cn
    [1]

    Poynting J H 1909 Proc. R. Soc. London Ser. A 82 560Google Scholar

    [2]

    Beth R A 1936 Phys. Rev. 50 115Google Scholar

    [3]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [4]

    Bozinovic N, Golowich S, Kristensen P, Ramachandran S 2012 Opt. Lett. 37 2451Google Scholar

    [5]

    Li S H, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [6]

    Niederriter R D, Siemens M E, Gopinath J T 2016 Opt. Lett. 41 3213Google Scholar

    [7]

    Oemrawsingh S S R, van Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J K, Kloosterboer J G, ’t Hooft G W 2004 Appl. Opt. 43 688Google Scholar

    [8]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [9]

    Gibson G, Courtical J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [10]

    Xiao Q S, Klitis C, Li S M, Chen Y Y, Cai X L, Sorel M, Yu S Y 2016 Opt. Express 24 3168Google Scholar

    [11]

    Cai X L, Wang J W, Strain M J, Morris M J, Zhu J B, Sorel M, O’Brien J L, Thompson M G, Yu S Y 2012 Science 338 363Google Scholar

    [12]

    Yue F Y, Wen D D, Zhang C M, Gerardot B D, Wang W, Zhang S, Chen X Z 2017 Adv Mater. 29 1603838Google Scholar

    [13]

    Niederriter R D, Siemens M E, Gopinath J T 2016 Opt. Lett. 41 5736Google Scholar

    [14]

    Chen Y, Gao J, Jiao Z Q, Sun K, Shen W G, Qiao L F, Tang H, Lin X F, Jin X M 2018 Phys. Rev. Lett. 121 233602Google Scholar

    [15]

    Zhang W H, Wang J K, Li F S, Chen L X, Karimi E 2017 Laser Photonics Rev. 11 1600163Google Scholar

    [16]

    Fu C L, Liu S, Wang Y, Bai Z Y, He J, Liao C R, Zhang Y, Zhang F, Yu B, Gao S C, Li Z H, Wang Y P 2018 Opt. Lett. 43 1786Google Scholar

    [17]

    Zhou H L, Fu D Z, Dong J J, Zhang P, Chen D X, Cai X L, Li F L, Zhang X L 2017 Light-Sci. Appl. 6 e16251Google Scholar

    [18]

    Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [19]

    Zhou N, Zheng S, Cao X P, Zhao Y F, Gao S Q, Zhu Y T, He M B, Cai X L, Wang J 2019 Sci. Adv. 5 eaau9593Google Scholar

    [20]

    Wang J W, Zepf M, Rykovanov S G 2019 Nat. Commun. 10 5554Google Scholar

    [21]

    Fang X Y, Ren H R, Gu M 2020 Nat. Photonics 14 102Google Scholar

    [22]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [23]

    Arnold S F, Allen L, Padgett M 2008 Laser Photonics Rev. 2 299Google Scholar

    [24]

    梅向明, 黄敬之 2003 微分几何 (第3版) (北京: 高教出版社) 第51—53页

    Mei X M, Huang J Z 2003 Differential Geometry (3rd Ed.) (Beijing: Higher Education Press) pp51−53 (in Chinese)

    [25]

    Yariv A 2013 Quantum Electronics (3rd Ed.) (New York: Wiley India Press) pp512–515

    [26]

    Schiff L I 1968 Quantum Mechanics (3rd Ed.) (New York: McGraw-Hill Book Company) pp24–25

    [27]

    柯熙政, 王姣著 2018 涡旋光束的产生、传输、检测及应用 (第1版) (北京: 科学出版社) 第194—196页

    Ke X Z, Wang J 2018 Generation, Transmission, Detection and Application of Vortex Beam (1st Ed.) (Beijing: Science Press) pp194–196 (in Chinese)

    [28]

    Born M, Wolf E 2001 Principles of Optics (7th Ed.) (Cambridge: World publishing Corporation) pp640–642

  • 图 1  (a) 光沿圆柱型螺线圈传输; (b) OAM光场分布图; (c) 几何相位

    Fig. 1.  (a) Fiber propagation along cylindrical spiral wave-guide; (b) OAM light field distribution, (c) berry phase.

    图 2  $k = 2$, $\psi (z) = {\rm{0}}{\rm{.5}}$时, (a) 路径矢量s, (b) 线动量密度P, (c) 角动量密度M的变化曲线

    Fig. 2.  (a) Path vector s; (b) linear momentum density P; (c) angular momentum density M with $k = 2$, $\psi (z) = {\rm{0}}{\rm{.5}}$.

    图 3  直线光纤传播, 光场分布是圆孔衍射斑

    Fig. 3.  There is no higher-order OAM mode in the cross section of the optical fibers propagating in a straight line, and the optical field distribution is a circular aperture diffraction spot.

    图 4  圆柱形光纤传播有高阶OAM模式 (a) $m = {\rm{1}}$; (b) $m = {\rm{2}}$; (c) $m = {\rm{4}}$; (d) $m = {\rm{16}}$

    Fig. 4.  The optical fiber cross section propagating in cylin-drical shape has a high-order OAM mode with: (a) $m = {\rm{1}}$; (b) $m = {\rm{2}}$; (c)$m = {\rm{4}}$; (d) $m = {\rm{16}}$.

  • [1]

    Poynting J H 1909 Proc. R. Soc. London Ser. A 82 560Google Scholar

    [2]

    Beth R A 1936 Phys. Rev. 50 115Google Scholar

    [3]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [4]

    Bozinovic N, Golowich S, Kristensen P, Ramachandran S 2012 Opt. Lett. 37 2451Google Scholar

    [5]

    Li S H, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [6]

    Niederriter R D, Siemens M E, Gopinath J T 2016 Opt. Lett. 41 3213Google Scholar

    [7]

    Oemrawsingh S S R, van Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J K, Kloosterboer J G, ’t Hooft G W 2004 Appl. Opt. 43 688Google Scholar

    [8]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [9]

    Gibson G, Courtical J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [10]

    Xiao Q S, Klitis C, Li S M, Chen Y Y, Cai X L, Sorel M, Yu S Y 2016 Opt. Express 24 3168Google Scholar

    [11]

    Cai X L, Wang J W, Strain M J, Morris M J, Zhu J B, Sorel M, O’Brien J L, Thompson M G, Yu S Y 2012 Science 338 363Google Scholar

    [12]

    Yue F Y, Wen D D, Zhang C M, Gerardot B D, Wang W, Zhang S, Chen X Z 2017 Adv Mater. 29 1603838Google Scholar

    [13]

    Niederriter R D, Siemens M E, Gopinath J T 2016 Opt. Lett. 41 5736Google Scholar

    [14]

    Chen Y, Gao J, Jiao Z Q, Sun K, Shen W G, Qiao L F, Tang H, Lin X F, Jin X M 2018 Phys. Rev. Lett. 121 233602Google Scholar

    [15]

    Zhang W H, Wang J K, Li F S, Chen L X, Karimi E 2017 Laser Photonics Rev. 11 1600163Google Scholar

    [16]

    Fu C L, Liu S, Wang Y, Bai Z Y, He J, Liao C R, Zhang Y, Zhang F, Yu B, Gao S C, Li Z H, Wang Y P 2018 Opt. Lett. 43 1786Google Scholar

    [17]

    Zhou H L, Fu D Z, Dong J J, Zhang P, Chen D X, Cai X L, Li F L, Zhang X L 2017 Light-Sci. Appl. 6 e16251Google Scholar

    [18]

    Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [19]

    Zhou N, Zheng S, Cao X P, Zhao Y F, Gao S Q, Zhu Y T, He M B, Cai X L, Wang J 2019 Sci. Adv. 5 eaau9593Google Scholar

    [20]

    Wang J W, Zepf M, Rykovanov S G 2019 Nat. Commun. 10 5554Google Scholar

    [21]

    Fang X Y, Ren H R, Gu M 2020 Nat. Photonics 14 102Google Scholar

    [22]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [23]

    Arnold S F, Allen L, Padgett M 2008 Laser Photonics Rev. 2 299Google Scholar

    [24]

    梅向明, 黄敬之 2003 微分几何 (第3版) (北京: 高教出版社) 第51—53页

    Mei X M, Huang J Z 2003 Differential Geometry (3rd Ed.) (Beijing: Higher Education Press) pp51−53 (in Chinese)

    [25]

    Yariv A 2013 Quantum Electronics (3rd Ed.) (New York: Wiley India Press) pp512–515

    [26]

    Schiff L I 1968 Quantum Mechanics (3rd Ed.) (New York: McGraw-Hill Book Company) pp24–25

    [27]

    柯熙政, 王姣著 2018 涡旋光束的产生、传输、检测及应用 (第1版) (北京: 科学出版社) 第194—196页

    Ke X Z, Wang J 2018 Generation, Transmission, Detection and Application of Vortex Beam (1st Ed.) (Beijing: Science Press) pp194–196 (in Chinese)

    [28]

    Born M, Wolf E 2001 Principles of Optics (7th Ed.) (Cambridge: World publishing Corporation) pp640–642

  • [1] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器. 物理学报, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [3] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] 赵丽娟, 赵海英, 徐志钮. 一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器. 物理学报, 2022, 71(7): 074206. doi: 10.7498/aps.71.20211909
    [6] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [7] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [8] 谭平安, 杨磊, 张波. 基于微分几何理论的参数失配系统时空同步研究. 物理学报, 2013, 62(23): 230507. doi: 10.7498/aps.62.230507
    [9] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [10] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [11] 黎芳, 江月松, 唐华, 王海洋. 光束偏移对轨道角动量信息传输系统的影响. 物理学报, 2009, 58(9): 6202-6209. doi: 10.7498/aps.58.6202
    [12] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [13] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [14] 刘全慧. 曲面上的动量和动能算符. 物理学报, 2008, 57(2): 674-677. doi: 10.7498/aps.57.674
    [15] 刘义东, 高春清, 高明伟, 李 丰. 利用光束的轨道角动量实现高密度数据存储的机理研究. 物理学报, 2007, 56(2): 854-858. doi: 10.7498/aps.56.854
    [16] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [17] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [18] 韦笃取, 罗晓曙, 方锦清, 汪秉宏. 基于微分几何方法的永磁同步电动机的混沌运动的控制. 物理学报, 2006, 55(1): 54-59. doi: 10.7498/aps.55.54
    [19] 张 毅. Birkhoff系统的Hojman定理的几何基础. 物理学报, 2004, 53(12): 4026-4028. doi: 10.7498/aps.53.4026
    [20] 鲍坚仁, 周鲁卫. 为什么轨道角动量不能是?/2?. 物理学报, 1997, 46(5): 833-840. doi: 10.7498/aps.46.833
计量
  • 文章访问数:  7871
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-29
  • 修回日期:  2019-12-20
  • 刊出日期:  2020-03-05

/

返回文章
返回