搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋湍流对光子轨道角动量量子通信的影响

刘瑞熙 马磊

引用本文:
Citation:

海洋湍流对光子轨道角动量量子通信的影响

刘瑞熙, 马磊

Effects of ocean turbulence on photon orbital angular momentum quantum communication

Liu Rui-Xi, Ma Lei
PDF
HTML
导出引用
  • 本文研究了基于光子轨道角动量的量子通信在水下量子信道中受海洋湍流运动的影响. 基于Elamassie等提出的海洋湍流功率谱模型, 本文建立了不同海洋湍流参数与光子轨道角动量量子通信的单光子探测概率、信道容量、密钥产生率以及双光子共生纠缠度的定量关系, 并利用纠缠光子对的共生纠缠度在海洋湍流中的普适衰减特性进一步研究了轨道角动量纠缠光子对在海洋湍流中的最大纠缠距离. 研究结果表明: 水下量子通信性能和纠缠光子对的共生纠缠度都随海洋湍流的湍流动能耗散率的增大或温度方差耗散率的减小而降低; 温度和盐度因素对海洋湍流贡献的比值对水下量子通信的影响在海水是否稳定分层的条件下具有显著的区别; 在通过海洋湍流进行量子通信时, 增加信号光子的初始轨道角动量量子数可以提高量子密钥分发的密钥产生率和纠缠光子的纠缠衰减抵抗性.
    The effect of the turbulent motion of ocean on the quantum communication based on the orbital angular momentum in an underwater quantum channel is studied in this work. Based on the power spectrum model of ocean turbulence proposed by Elamassie, the quantitative relationships of different ocean turbulence parameters with the single photon detection probability of orbital angular momentum photons, the channel capacity, the key generation rate, the concurrence of two entangled photons are proposed. The maximum entanglement distance of the orbital angular momentum entangled photon-pairs in the ocean turbulence is further studied by the universal entanglement decay of the concurrence of entangled photon-pairs in the ocean turbulence. The results show that the detection probability of single photon, the channel capacity, the key generation rate, and the concurrence of entangled photon-pairs decrease with the increase of the dissipation rate of turbulent kinetic energy and the decrease of the rate of dissipation of mean-squared temperature. The influence of the temperature and salinity balance parameter of ocean turbulence on the performance of underwater quantum communication are significantly different under the condition of whether the stable stratification of seawater is assumed or not. In the ocean turbulent environment, the increasing of the initial orbital angular momentum quantum number of signal photons can improve the key generation rate of quantum key distribution and the resistance of entangled photons to entanglement decay.
      通信作者: 马磊, malei18@cdut.edu.cn
      Corresponding author: Ma Lei, malei18@cdut.edu.cn
    [1]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376Google Scholar

    [2]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795Google Scholar

    [3]

    聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303Google Scholar

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303Google Scholar

    [4]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301

    Nie M, Wang C X, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301

    [5]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [6]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [7]

    Zhao S C, Li W D, Shen Y, Yu Y H, Han X H, Zeng H, Cai M Q, Qian T, Wang S, Wang Z M, Xiao Y, Gu Y J 2019 Appl. Opt. 58 3902Google Scholar

    [8]

    Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220Google Scholar

    [9]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [10]

    Molina-Terriza G, Torres J P, Torner L 2002 Phys. Rev. Lett. 88 013601

    [11]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [12]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nature Phys. 4 282Google Scholar

    [13]

    Bechmann-Pasquinucci H, Peres A 2000 Phys. Rev. Lett. 85 3313Google Scholar

    [14]

    Spedalieri F M 2006 Opt. Commun. 260 340Google Scholar

    [15]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [16]

    Ibrahim A H, Roux F S, McLaren M, Konrad T, Forbes A 2013 Phys. Rev. A 88 012312Google Scholar

    [17]

    Bouchard F, Sit A, Hufnagel F, Abbas A, Zhang Y W, Heshami K, Fickler R, Marquardt C, Leuchs G, Boyd R W, Karimi E 2018 Opt. Express 26 22563Google Scholar

    [18]

    胡涛, 潘孙翔, 王乐, 赵生妹 2018 量子电子学报 35 499

    Hu T, Pan S X, Wang L, Zhang S M Chin. J. Quantum Electron. 35 499 (in Chinese)

    [19]

    Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q, Zhang D 2016 Appl. Opt. 55 4642Google Scholar

    [20]

    Elamassie M, Uysal M, Baykal Y, Abdallah M, Qaraqe K 2017 J. Opt. Soc. Am. A 34 1969Google Scholar

    [21]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington USA: SPIE Press) pp192−206

    [22]

    吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林 2018 物理学报 67 224206Google Scholar

    Wu T, Ji X L, Li X Q, Wang H, Deng Y, Ding Z L 2018 Acta Phys. Sin. 67 224206Google Scholar

    [23]

    Fried D L 1966 J. Opt. Soc. Am. 56 1372Google Scholar

    [24]

    Alonso J R G, Brun T A 2013 Phys. Rev. A 88 022326Google Scholar

    [25]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [26]

    Wang L, Zhao S M, Gong L Y, Cheng W W 2015 Chin. Phys. B 24 120307Google Scholar

    [27]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640Google Scholar

    [28]

    Leonhard N D, Shatokhin V N, Buchleitner A 2015 Phys. Rev. A 91 012345Google Scholar

    [29]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [30]

    Yu T, Eberly J H 2006 Opt. Commun. 264 393Google Scholar

    [31]

    Gao F, Qin S J, Huang W, Wen Q Y 2019 Sci. China-Phys. Mech. Astron. 62 070301Google Scholar

  • 图 1  单光子探测概率与w的关系

    Fig. 1.  Relationship between single photon detection probability and w

    图 2  单光子探测概率与$ {\chi _T} $ε的关系

    Fig. 2.  The relationship between single photon detection probability and $ {\chi _T} $ and ε

    图 3  信道容量随各海洋湍流参数的变化关系

    Fig. 3.  The relationship of channel capacity with the ocean turbulence parameters

    图 4  密钥产生率随传输距离的变化关系

    Fig. 4.  The relationship of key generation rate with transmission distance

    图 5  共生纠缠度与$ {\chi _T} $ε的关系

    Fig. 5.  The relationship between output state concurrence and $ {\chi _T} $ and ε

    图 6  共生纠缠度与zw的关系

    Fig. 6.  The relationship between output state concurrence and z and w

    图 7  共生纠缠度与$ {l_0} $$ {r_0} $的关系

    Fig. 7.  The relationship between output state concurrence and $ {l_0} $ and $ {r_0} $

    图 8  共生纠缠度与$ \xi ({l_0})/{r_0} $的关系

    Fig. 8.  The relationship between output state concurrence and $ \xi ({l_0})/{r_0} $

    图 9  共生纠缠度随各海洋湍流参数的变化关系

    Fig. 9.  The relationship between concurrence and the ocean turbulence parameters

    表 1  密钥分发系统的仿真参数值

    Table 1.  Simulation parameters of key distribution system

    Parameter$ {P_d} $f$ {e_d} $$ \mu (\upsilon ) $
    Value$ 3.0 \times {10^{ - 6}} $$ 1.16 $1.5%$ 0.1 $
    下载: 导出CSV
  • [1]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 376Google Scholar

    [2]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795Google Scholar

    [3]

    聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303Google Scholar

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303Google Scholar

    [4]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301

    Nie M, Wang C X, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301

    [5]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [6]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [7]

    Zhao S C, Li W D, Shen Y, Yu Y H, Han X H, Zeng H, Cai M Q, Qian T, Wang S, Wang Z M, Xiao Y, Gu Y J 2019 Appl. Opt. 58 3902Google Scholar

    [8]

    Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220Google Scholar

    [9]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [10]

    Molina-Terriza G, Torres J P, Torner L 2002 Phys. Rev. Lett. 88 013601

    [11]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [12]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nature Phys. 4 282Google Scholar

    [13]

    Bechmann-Pasquinucci H, Peres A 2000 Phys. Rev. Lett. 85 3313Google Scholar

    [14]

    Spedalieri F M 2006 Opt. Commun. 260 340Google Scholar

    [15]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [16]

    Ibrahim A H, Roux F S, McLaren M, Konrad T, Forbes A 2013 Phys. Rev. A 88 012312Google Scholar

    [17]

    Bouchard F, Sit A, Hufnagel F, Abbas A, Zhang Y W, Heshami K, Fickler R, Marquardt C, Leuchs G, Boyd R W, Karimi E 2018 Opt. Express 26 22563Google Scholar

    [18]

    胡涛, 潘孙翔, 王乐, 赵生妹 2018 量子电子学报 35 499

    Hu T, Pan S X, Wang L, Zhang S M Chin. J. Quantum Electron. 35 499 (in Chinese)

    [19]

    Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q, Zhang D 2016 Appl. Opt. 55 4642Google Scholar

    [20]

    Elamassie M, Uysal M, Baykal Y, Abdallah M, Qaraqe K 2017 J. Opt. Soc. Am. A 34 1969Google Scholar

    [21]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington USA: SPIE Press) pp192−206

    [22]

    吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林 2018 物理学报 67 224206Google Scholar

    Wu T, Ji X L, Li X Q, Wang H, Deng Y, Ding Z L 2018 Acta Phys. Sin. 67 224206Google Scholar

    [23]

    Fried D L 1966 J. Opt. Soc. Am. 56 1372Google Scholar

    [24]

    Alonso J R G, Brun T A 2013 Phys. Rev. A 88 022326Google Scholar

    [25]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [26]

    Wang L, Zhao S M, Gong L Y, Cheng W W 2015 Chin. Phys. B 24 120307Google Scholar

    [27]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640Google Scholar

    [28]

    Leonhard N D, Shatokhin V N, Buchleitner A 2015 Phys. Rev. A 91 012345Google Scholar

    [29]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [30]

    Yu T, Eberly J H 2006 Opt. Commun. 264 393Google Scholar

    [31]

    Gao F, Qin S J, Huang W, Wen Q Y 2019 Sci. China-Phys. Mech. Astron. 62 070301Google Scholar

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [3] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究. 物理学报, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [4] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [5] 吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林. 海洋湍流中光波特征参量和短期光束扩展的研究. 物理学报, 2018, 67(22): 224206. doi: 10.7498/aps.67.20181033
    [6] 吴彤, 季小玲, 罗燏娟. 海洋湍流中自适应光学成像系统特征参量研究. 物理学报, 2018, 67(5): 054206. doi: 10.7498/aps.67.20171851
    [7] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [8] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [9] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性. 物理学报, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [10] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [11] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [12] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [13] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [14] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [20] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
计量
  • 文章访问数:  5317
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-08-30
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回