-
量子光源是量子信息处理的关键器件之一, 是量子计算、量子通信、量子模拟等应用的重要基础, 基于量子光源制备量子态并提升其编码容量是量子信息技术发展的重大挑战. 轨道角动量 (OAM) 是光子一种无限维的空间自由度, 其空间模式构成无限维完备的正交基, 利用OAM制备高维量子态可大幅提升量子信息处理容量, 是高维量子信息处理的关键资源. 随着光量子技术的进步, 多种重要光量子器件已可在集成化芯片上实现. 然而, 微纳尺度下制备高维OAM量子态仍是实现量子光源集成化的挑战, 亟需深入研究和突破. 本文综述并讨论了集成化OAM量子光源的研究进展及其研究中面临的热点和难点问题, 为推进高维量子光源在量子信息处理中的研究及实用化进程提供参考.Quantum light sources are one of key devices for quantum information processing, and they are also the important foundation for applications such as in quantum computing, quantum communication, and quantum simulation. Improving the capacity of quantum information coding by using the quantum light source is a major challenge in the development of quantum information technology. Photons with a helical phase front can carry a discrete, unlimited but quantized amount of orbital angular momentum (OAM). The infinite number of states with different OAMs can greatly increase the capacity of optical communication and information processing in quantum regimes. To date photons carrying OAM have mainly been generated by using bulk crystals, which limits the efficiency and the scalability of the source. With the advancement of quantum photonic technology, many significant quantum photonic devices can now be realized on integrated chips. However, creating high-dimensional OAM quantum states at a micro-nano scale is still a challenge. And the research of harnessing high-dimensional OAM mode by using integrated quantum photonic technologies is still in its infancy. Here, the authors review the recent progress and discuss the integrated quantum light sources with OAM. The authors introduce the research progress of using OAM for both single photons and entangled photons and emphasize the exciting work on pushing boundaries in high-dimensional quantum states. This may pave the way for the research and practical applications of high-dimensional quantum light sources.
-
Keywords:
- orbital angular momentum /
- quantum light source /
- integration /
- high-dimensional quantum state
[1] Flamini F, Spagnolo N, Sciarrino F 2018 Rep. Prog. Phys. 82 016001Google Scholar
[2] Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar
[3] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[4] Willner A E, Huang H, Yan Y, et al. 2015 Adv. Opt. Photonics 7 66Google Scholar
[5] Shen Y, Wang X, Xie Z, et al. 2019 Light-Sci. Appl. 8 90Google Scholar
[6] Romero J, Giovannini D, Franke-Arnold S, et al. 2012 Phys. Rev. A 86 012334Google Scholar
[7] Fickler R, Lapkiewicz R, Plick W N, et al. 2012 Science 338 640Google Scholar
[8] Krenn M, Handsteiner J, Fink M, Zeilinger A 2015 Proc. Natl. Acad. Sci. U. S. A. 112 14197Google Scholar
[9] Krenn M, Handsteiner J, Fink M, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13648Google Scholar
[10] Sit A, Bouchard F, Fickler R, et al. 2017 Optica 4 1006Google Scholar
[11] Migdall A, Polyakov S V, Fan J, Bienfang J C 2013 Single-photon Generation and Detection: Physics and Application (Oxford: Academic Press
[12] Cai X, Wang J, Strain M J, et al. 2012 Science 338 363Google Scholar
[13] Miao P, Zhang Z, Sun J, et al. 2016 Science 353 464Google Scholar
[14] Zhang J, Sun C, Xiong B, et al. 2018 Nat. Commun. 9 2652Google Scholar
[15] Chen B, Wei Y, Zhao T, et al. 2021 Nat. Nanotechnol. 16 302Google Scholar
[16] Zhao H, Ma Y, Gao Z, et al. 2023 Phys. Rev. Lett. 131 183801Google Scholar
[17] Zhang S, Li S, Feng X, et al. 2021 Photonics Res. 9 1865Google Scholar
[18] Wu C, Kumar S, Kan Y, et al. 2022 Sci. Adv. 8 eabk3075Google Scholar
[19] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar
[20] Leach J, Jack B, Romero J, et al. 2010 Science 329 662Google Scholar
[21] Fickler R, Campbell G, Buchler B, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13642Google Scholar
[22] Zhang W, Ding D S, Dong M X, et al. 2016 Nature Commun. 14 13514Google Scholar
[23] Liu S L, Zhou Q, Zhou Z Y, et al. 2019 Phys. Rev. A 100 013833Google Scholar
[24] Cao H, Gao S C, Zhang C, et al. 2020 Optica 7 232Google Scholar
[25] Zhang P, Ren X F, Zou X B, et al. 2007 Phys. Rev. A 75 052310Google Scholar
[26] Zhou Z Y, Liu S L, Li Y, et al. 2016 Phys. Rev. Lett. 117 103601Google Scholar
[27] Zhou Z Y, Li Y, Ding D S, et al. 2016 Light-Sci. Appl. 5 e16019Google Scholar
[28] Wang X L, Cai X D, Su Z E, et al. 2015 Nature 518 516Google Scholar
[29] Stav T, Faerman A, Maguid E, et al. 2018 Science 361 1101Google Scholar
[30] Ming Y, Zhang W, Tang J, et al. 2020 Laser Photonics Rev. 14 1900146Google Scholar
[31] Suprano A, Zia D, Pont M, et al. 2023 Adv. Photonics 5 046008Google Scholar
[32] Forbes A, Nape I 2019 AVS Quantum Sci. 1 011701Google Scholar
[33] Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170Google Scholar
[34] Chen B, Zhou Y, Liu Y, et al. 2024 Nat. Photonics 18 625Google Scholar
-
图 2 微纳尺度下轨道角动量单光子源实现方案 (a) 嵌入量子点的微环谐振腔产生轨道角动量量子叠加态的单光子源[15]; (b) 二维材料与微环谐振腔的混合集成实现可调谐的轨道角动量单光子源[16]; (c) 片上集成预报式可调轨道角动量单光子源[17]; (d) 金刚石色心与阿基米德螺旋光栅集成化轨道角动量单光子源[18]
Fig. 2. Schemes of orbital angular momentum single-photon sources at nanoscale: (a) Microring resonators embedded with quantum dots for the generation of single photons carrying quantum superposition states of OAM[15]; (b) the on-chip switchable twisted single photon source by hybrid integration of monolayer WSe2 and a microring resonator[16]; (c) the integrated heralded single-photon source with switchable OAM modes[17]; (d) the OAM single-photon source operation in layer-by-layer integration[18].
图 3 (a) 基于超构表面制备光子自旋角动量与轨道角动量之间的量子纠缠态[29]; (b) 基于叉形光栅非线性等离子体超构表面的非线性参量下转换过程产生的轨道角动量纠缠态[30]; (c) 利用量子点单光子源产生基于轨道角动量粒子内和粒子间纠缠态[31]; (d) 多光子高维纠缠态的制备方法对比及待开发领域[32]
Fig. 3. (a) Entanglement between spin and OAM on a single photon by using a dielectric metasurface[29]; (b) the generation of OAM entangled state with fork-shaped metamaterials by parametric down conversion process in the nonlinear metamaterial[30]; (c) orbital angular momentum based intra- and interparticle entangled states generated via a quantum dot source[31]; (d) high-dimensional multiphoton entanglement process and a tremendous void that is yet to be filled[32].
-
[1] Flamini F, Spagnolo N, Sciarrino F 2018 Rep. Prog. Phys. 82 016001Google Scholar
[2] Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar
[3] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[4] Willner A E, Huang H, Yan Y, et al. 2015 Adv. Opt. Photonics 7 66Google Scholar
[5] Shen Y, Wang X, Xie Z, et al. 2019 Light-Sci. Appl. 8 90Google Scholar
[6] Romero J, Giovannini D, Franke-Arnold S, et al. 2012 Phys. Rev. A 86 012334Google Scholar
[7] Fickler R, Lapkiewicz R, Plick W N, et al. 2012 Science 338 640Google Scholar
[8] Krenn M, Handsteiner J, Fink M, Zeilinger A 2015 Proc. Natl. Acad. Sci. U. S. A. 112 14197Google Scholar
[9] Krenn M, Handsteiner J, Fink M, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13648Google Scholar
[10] Sit A, Bouchard F, Fickler R, et al. 2017 Optica 4 1006Google Scholar
[11] Migdall A, Polyakov S V, Fan J, Bienfang J C 2013 Single-photon Generation and Detection: Physics and Application (Oxford: Academic Press
[12] Cai X, Wang J, Strain M J, et al. 2012 Science 338 363Google Scholar
[13] Miao P, Zhang Z, Sun J, et al. 2016 Science 353 464Google Scholar
[14] Zhang J, Sun C, Xiong B, et al. 2018 Nat. Commun. 9 2652Google Scholar
[15] Chen B, Wei Y, Zhao T, et al. 2021 Nat. Nanotechnol. 16 302Google Scholar
[16] Zhao H, Ma Y, Gao Z, et al. 2023 Phys. Rev. Lett. 131 183801Google Scholar
[17] Zhang S, Li S, Feng X, et al. 2021 Photonics Res. 9 1865Google Scholar
[18] Wu C, Kumar S, Kan Y, et al. 2022 Sci. Adv. 8 eabk3075Google Scholar
[19] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar
[20] Leach J, Jack B, Romero J, et al. 2010 Science 329 662Google Scholar
[21] Fickler R, Campbell G, Buchler B, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13642Google Scholar
[22] Zhang W, Ding D S, Dong M X, et al. 2016 Nature Commun. 14 13514Google Scholar
[23] Liu S L, Zhou Q, Zhou Z Y, et al. 2019 Phys. Rev. A 100 013833Google Scholar
[24] Cao H, Gao S C, Zhang C, et al. 2020 Optica 7 232Google Scholar
[25] Zhang P, Ren X F, Zou X B, et al. 2007 Phys. Rev. A 75 052310Google Scholar
[26] Zhou Z Y, Liu S L, Li Y, et al. 2016 Phys. Rev. Lett. 117 103601Google Scholar
[27] Zhou Z Y, Li Y, Ding D S, et al. 2016 Light-Sci. Appl. 5 e16019Google Scholar
[28] Wang X L, Cai X D, Su Z E, et al. 2015 Nature 518 516Google Scholar
[29] Stav T, Faerman A, Maguid E, et al. 2018 Science 361 1101Google Scholar
[30] Ming Y, Zhang W, Tang J, et al. 2020 Laser Photonics Rev. 14 1900146Google Scholar
[31] Suprano A, Zia D, Pont M, et al. 2023 Adv. Photonics 5 046008Google Scholar
[32] Forbes A, Nape I 2019 AVS Quantum Sci. 1 011701Google Scholar
[33] Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170Google Scholar
[34] Chen B, Zhou Y, Liu Y, et al. 2024 Nat. Photonics 18 625Google Scholar
计量
- 文章访问数: 3390
- PDF下载量: 229
- 被引次数: 0