搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于量子纠缠密钥的多波长量子关联光子对的产生

胡飞飞 李思莹 朱顺 黄昱 林旭斌 张思拓 范云茹 周强 刘云

引用本文:
Citation:

用于量子纠缠密钥的多波长量子关联光子对的产生

胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云
cstr: 32037.14.aps.73.20241274

Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution

Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun
cstr: 32037.14.aps.73.20241274
PDF
HTML
导出引用
  • 随着量子信息技术的发展, 多用户量子纠缠密钥分发网络受到越来越多的关注. 其中, 多波长量子光源是建立多用户连接的关键器件. 尽管近年来在多波长量子光源的研究上取得了显著的进展, 但受限于非线性光学器件的设计和制备技术, 增加量子光源的输出波长数仍然具有挑战性. 本文系统分析了氮化硅微环谐振腔的色散和尺寸等关键参数; 设计并制备得到了自由光谱范围为20 GHz的氮化硅微环谐振腔, 实验测试了氮化硅微环腔中量子关联光子对的产生和输出特性. 实验结果表明, 该光源在25.6 nm的波长范围内实现了71对波长上的关联光子对产生.
    With the rapid development of quantum information technology, fully connected multi-user quantum entanglement distribution networks have received increasing attention. Among these, multi-wavelength quantum light sources are key devices for establishing connections between multiple users. Despite recent impressive advances, there are still challenges in increasing the wavelength number of photon pairs due to limitations in the design and fabrication of nonlinear optical devices. The potentials of silicon nitride (Si3N4) microring resonators (MRRs), as scalable platforms for multi-wavelength quantum light sources, are explored in this work.The key design parameters of the Si3N4 MRRs, including waveguide dimension, resonator dispersion, and coupling condition, are comprehensively analyzed to optimize photon-pair generation. Based on these parameters, a Si3N4 MRR with a free spectral range of 20 GHz and an average quality factor of 1.6 million is designed and fabricated. This small free spectral range can generate more channels of correlated photon pairs by using the same wavelength resources. The high-quality resonator contributes to the enhancement of the rate of generating high photon pairs , which are critical for quantum entanglement distribution. With a continuous-wave pump laser, correlated photon pairs across a wide spectral range are generated through the spontaneous four-wave mixing (SFWM). The coincidence-to-accidental ratio (CAR) measurements verify the strong quantum correlation between photon pairs, highlighting the reliability of the system for entanglement distribution. Furthermore, the generation and output characteristics of quantum-correlated photon pairs are experimentally investigated with a tunable bandpass filter. The results demonstrate that 71 wavelength-correlated photon pairs within a 25.6 nm spectral range are successively generated as shown in the Fig. A. Our results pave the way for developing the multi-wavelength quantum light sources with Si3N4 platform, thereby advancing the multi-user quantum networks.
      通信作者: 范云茹, yunrufan@gmail.com
    • 基金项目: 中国南方电网有限责任公司科技项目(批准号: 000005KK52220034 (ZDKJXM20222036))资助的课题.
      Corresponding author: Fan Yun-Ru, yunrufan@gmail.com
    • Funds: Project supported by China Southern Power Grid Project of Science and Technology (Grant No. 000005KK52220034 (ZDKJXM20222036)).
    [1]

    O'brien J L 2007 Science 318 1567Google Scholar

    [2]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [3]

    Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023 Nat. Rev. Phys. 5 339Google Scholar

    [4]

    Córcoles A D, Takita M, Inoue K, Lekuch S, Minev Z K, Chow J M, Gambetta J M 2021 Phys. Rev. Lett. 127 100501Google Scholar

    [5]

    Schupp J, Krcmarsky V, Krutyanskiy V, Meraner M, Northup T E, Lanyon B P 2021 PRX Quantum 2 020331Google Scholar

    [6]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [7]

    Politi A, Matthews J C, Thompson M G, O'brien J L 2009 IEEE J. Sel. Top. Quantum Electron. 15 1673Google Scholar

    [8]

    Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [9]

    Lu L, Zheng X, Lu Y, Zhu S, Ma X S 2021 Adv. Quantum Technol. 4 2100068Google Scholar

    [10]

    Wengerowsky S, Joshi S K, Steinlechner F, Hübel H, Ursin R 2018 Nature 564 225Google Scholar

    [11]

    Roslund J, De Araujo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [12]

    Joshi S K, Aktas D, Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Ž, Kling L J S A 2020 Sci. Adv. 6 eaba0959Google Scholar

    [13]

    Ma Z, Chen J Y, Li Z, Tang C, Sua Y M, Fan H, Huang Y P 2020 Phys. Rev. Lett. 125 263602Google Scholar

    [14]

    Yin Z, Sugiura K, Takashima H, Okamoto R, Qiu F, Yokoyama S, Takeuchi S 2021 Opt. Express 29 4821Google Scholar

    [15]

    Rahmouni A, Wang R, Li J, Tang X, Gerrits T, Slattery O, Li Q, Ma L 2024 Light Sci. Appl. 13 110Google Scholar

    [16]

    Fan Y R, Lyu C, Yuan C Z, Deng G W, Zhou Z Y, Geng Y, Song H Z, Wang Y, Zhang Y F, Jin R B 2023 Laser Photonics Rev. 17 2300172Google Scholar

    [17]

    Zeng H, He Z Q, Fan Y R, Luo Y, Lyu C, Wu J P, Li Y B, Liu S, Wang D, Zhang D C 2024 Phys. Rev. Lett. 132 133603Google Scholar

    [18]

    范云茹 2022 博士学位论文 (成都: 电子科技大学)

    Fan Y R 2022 Ph. D. Dissertation (University of Electronic Science and Technology of China

    [19]

    Wang H, Zeng Q, Ma H, Yuan Z 2024 Adv. Devices Instrum. 5 0032Google Scholar

    [20]

    Samara F, Maring N, Martin A, Raja A S, Kippenberg T J, Zbinden H, Thew R 2021 Quantum Sci. Technol. 6 045024Google Scholar

    [21]

    Ou Z Y, Lu Y J 1999 Phys. Rev. Lett. 83 2556Google Scholar

  • 图 1  氮化硅微环器件 (a) 理论设计的氮化硅波导的截面尺寸; (b) 氮化硅微环器件的显微图片; (c) 尾纤耦合和温控封装后的器件实物图

    Fig. 1.  Si3N4 microring device: (a) Designed cross-sectional dimensions of the Si3N4 waveguide; (b) image of the Si3N4 microring device; (c) picture of the Si3N4 device after fiber pigtail coupling and temperature control packaging.

    图 2  氮化硅微环谐振特性测试原理装置图. CW laser: 连续激光器; MRR: 微环谐振腔; PD: 光电探测器; Oscilloscope: 示波器

    Fig. 2.  Schematic of measuring the resonance property of Si3N4 MRR. MRR: microring resonator; PD: photodetector.

    图 3  测量得到的氮化硅微环腔的谐振特性

    Fig. 3.  Measured resonance property of the Si3N4 MRR.

    图 5  自发四波混频过程[18] (a) 三阶非线性光学材料中的自发四波混频过程; (b) 能量守恒条件; (c) 动量守恒条件

    Fig. 5.  Spontaneous four-wave mixing process: (a) Spontaneous four-wave mixing process in the third order nonlinear optical materials; (b) energy conservation condition; (c) momentum conservation condition.

    图 4  测量得到的1540.5 nm附近光学传输谱线

    Fig. 4.  Measured transmission spectrum around 1540.5 nm.

    图 6  氮化硅微环的关联光子对产生和测试实验原理装置图. CW laser: 连续激光器; VOA: 可调光衰减器;EDFA:掺铒光纤放大器; PC: 偏振控制器; BS: 分束器; PM: 功率计; DWDM: 密集波分复用器; MRR: 微环谐振腔; WSS: 波长选择开关; SNSPD: 超导纳米线单光子探测器; TDC: 时间-数字转换器

    Fig. 6.  Experimental setup for generating and measuring correlated photon pairs in Si3N4 MRR. VOA: variable optical attenuator; EDFA: erbium-doped fiber amplifier; PC: polarization controller; BS: beam splitter; PM: power meter; DWDM: dense wavelength division multiplexer; WSS: wavelength selective switch; SNSPD: superconducting nanowire single-photon detector; TDC: time-to-digital converter

    图 7  不同泵浦功率水平下, 信号光子与闲频光子的单边计数率

    Fig. 7.  Single side count rates of signal photons and idler photons at different pump power levels.

    图 8  泵浦功率为2 mW时, 信号光子与闲频光子的符合测量结果

    Fig. 8.  Histogram of coincidence counts between signal photons and idler photons at a pump power of 2 mW.

    图 9  光子对量子关联特性测量 (a) 不同泵浦功率下信号光子与闲频光子的符合计数与偶然符合计数; (b) 不同泵浦功率下的CAR

    Fig. 9.  Quantum correlation measurements of photon pairs: (a) Coincidence count rate and accidental coincidence count rate between signal photons and idler photons; (b) CAR at different pump powers.

    图 10  测量得到的多波长对量子关联光子对的符合计数

    Fig. 10.  Measured coincidence count rate with multiple paired wavelengths.

  • [1]

    O'brien J L 2007 Science 318 1567Google Scholar

    [2]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [3]

    Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023 Nat. Rev. Phys. 5 339Google Scholar

    [4]

    Córcoles A D, Takita M, Inoue K, Lekuch S, Minev Z K, Chow J M, Gambetta J M 2021 Phys. Rev. Lett. 127 100501Google Scholar

    [5]

    Schupp J, Krcmarsky V, Krutyanskiy V, Meraner M, Northup T E, Lanyon B P 2021 PRX Quantum 2 020331Google Scholar

    [6]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [7]

    Politi A, Matthews J C, Thompson M G, O'brien J L 2009 IEEE J. Sel. Top. Quantum Electron. 15 1673Google Scholar

    [8]

    Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [9]

    Lu L, Zheng X, Lu Y, Zhu S, Ma X S 2021 Adv. Quantum Technol. 4 2100068Google Scholar

    [10]

    Wengerowsky S, Joshi S K, Steinlechner F, Hübel H, Ursin R 2018 Nature 564 225Google Scholar

    [11]

    Roslund J, De Araujo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [12]

    Joshi S K, Aktas D, Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Ž, Kling L J S A 2020 Sci. Adv. 6 eaba0959Google Scholar

    [13]

    Ma Z, Chen J Y, Li Z, Tang C, Sua Y M, Fan H, Huang Y P 2020 Phys. Rev. Lett. 125 263602Google Scholar

    [14]

    Yin Z, Sugiura K, Takashima H, Okamoto R, Qiu F, Yokoyama S, Takeuchi S 2021 Opt. Express 29 4821Google Scholar

    [15]

    Rahmouni A, Wang R, Li J, Tang X, Gerrits T, Slattery O, Li Q, Ma L 2024 Light Sci. Appl. 13 110Google Scholar

    [16]

    Fan Y R, Lyu C, Yuan C Z, Deng G W, Zhou Z Y, Geng Y, Song H Z, Wang Y, Zhang Y F, Jin R B 2023 Laser Photonics Rev. 17 2300172Google Scholar

    [17]

    Zeng H, He Z Q, Fan Y R, Luo Y, Lyu C, Wu J P, Li Y B, Liu S, Wang D, Zhang D C 2024 Phys. Rev. Lett. 132 133603Google Scholar

    [18]

    范云茹 2022 博士学位论文 (成都: 电子科技大学)

    Fan Y R 2022 Ph. D. Dissertation (University of Electronic Science and Technology of China

    [19]

    Wang H, Zeng Q, Ma H, Yuan Z 2024 Adv. Devices Instrum. 5 0032Google Scholar

    [20]

    Samara F, Maring N, Martin A, Raja A S, Kippenberg T J, Zbinden H, Thew R 2021 Quantum Sci. Technol. 6 045024Google Scholar

    [21]

    Ou Z Y, Lu Y J 1999 Phys. Rev. Lett. 83 2556Google Scholar

  • [1] 余敏, 郭有能. 关联退相位有色噪声通道下熵不确定关系的调控. 物理学报, 2024, 73(22): 220301. doi: 10.7498/aps.73.20241171
    [2] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [3] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器. 物理学报, 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [4] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述. 物理学报, 2022, 71(7): 070302. doi: 10.7498/aps.71.20212197
    [5] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [6] 张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博. 利用域排列算法设计铌酸锂晶体实现3 μm中红外波段频域纯态单光子源. 物理学报, 2022, 71(20): 204201. doi: 10.7498/aps.71.20220739
    [7] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [8] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性. 物理学报, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [9] 肖金标, 罗辉, 徐银, 孙小菡. 硅基槽式微环谐振腔型偏振解复用器全矢量分析. 物理学报, 2015, 64(19): 194207. doi: 10.7498/aps.64.194207
    [10] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟. 结构参数对串联微环谐振腔编解码器性能的影响. 物理学报, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [11] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响. 物理学报, 2015, 64(3): 030301. doi: 10.7498/aps.64.030301
    [12] 焦荣珍, 丁天, 王文集, 马海强. 基于不可信光源的量子密钥分配的统计特性研究. 物理学报, 2013, 62(18): 180302. doi: 10.7498/aps.62.180302
    [13] 曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武. 基于Add-drop型微环谐振腔的硅基高速电光调制器设计. 物理学报, 2013, 62(19): 194210. doi: 10.7498/aps.62.194210
    [14] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [15] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学. 物理学报, 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [16] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [17] 焦荣珍, 张弨, 马海强. 基于实用光源的诱惑态量子密钥分配研究. 物理学报, 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [18] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [19] 蔡鑫伦, 黄德修, 张新亮. 基于全矢量模式匹配法的三维弯曲波导本征模式计算. 物理学报, 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268
    [20] 杨宇光, 温巧燕, 朱甫臣. 基于纠缠交换的多方多级量子密钥分配协议. 物理学报, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
计量
  • 文章访问数:  404
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-10
  • 修回日期:  2024-10-11
  • 上网日期:  2024-11-06
  • 刊出日期:  2024-12-05

/

返回文章
返回