搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基槽式微环谐振腔型偏振解复用器全矢量分析

肖金标 罗辉 徐银 孙小菡

引用本文:
Citation:

硅基槽式微环谐振腔型偏振解复用器全矢量分析

肖金标, 罗辉, 徐银, 孙小菡

Full-vectorial analysis of a polarization demultiplexer using a microring resonator with silicon-based slot waveguides

Xiao Jin-Biao, Luo Hui, Xu Yin, Sun Xiao-Han
PDF
导出引用
  • 提出一种紧凑型偏振解复用器, 其中两条常规硅基波导作为输入/输出信号通道, 居于其中的槽式微环谐振腔用于偏振态/波长选择组件. 采用全矢量频域有限差分法详细分析了硅基常规及槽波导的模式特性, 结果发现其横磁模的模场布及其有效折射率相似, 而其横电模相应的特性则差异明显, 结果输入横磁模能够在谐振工作波长下从下路端口输出, 而输入横电模与微环耦合可以忽略, 直接从直通端口输出, 从而实现两偏振态的高效分离. 采用全矢量时域有限差分法详细分析了该偏振解复用器的光波传输特性, 结果表明, 当微环半径为3.489 m时, 在1.55 m工作波长下, 横磁模与横电模的消光比与插入损耗分别为 ~ 26.12 (36.67) dB与 ~ 0.49 (0.09) dB. 另外, 论文详细讨论了器件关键结构参数的制作容差, 并给出了输入模场在器件中的传输演变情况.
    Photonic integrated circuits (PICs) based on silicon-on-insulator (SOI) platform with the advantages of high-index-contrast and CMOS-compatible process can efficiently reduce the component sizes and densely integrate them at a chip scale. To meet the ever-increasing demand for the optical interconnect capacity, various multiplexing techniques have been used. However, it should still be proposed to effectively reduce the component size accompanied with the reasonable performance and wavelength division multiplexing (WDM) compatibility. To the best of our knowledge, there has no attempt so far to design a polarization demultiplexer based on a microring resonator in slot waveguide structures. In this paper, a compact silicon-based polarization demultiplexer is proposed, where two regular silicon-based waveguides are used as the input/output channels and a microring in slot waveguide structures is used as the polarization/wavelength-selective component. A full-vectorial finite-difference frequency-domain method is utilized to study the modal characteristics of the regular and slot silicon-based waveguides, where the effective indices and coupling for transverse magnetic (TM) and transverse electric (TE) modes are presented. With the unique modal characteristics of slot waveguides and the strong polarization-dependent features of microring resonator, we can show that the field distributions and the effective indices of the TM mode between the regular and slot waveguides are similar, while those of the TE mode show clearly different. As a result, the input TM mode outputs from the drop port at the resonant wavelength, while the input TE mode outputs from the through port directly with nearly neglected coupling, thus the two polarizations are separated efficiently. A three-dimensional finite-difference time-domain method is utilized to study the spectrum and transmission characteristics of the proposed device. From the results, a polarization demultiplexer with a radius of 3.489 m is achieved with the extinction ratio and insertion loss of ~ 26.12(36.67) dB and ~ 0.49(0.09) dB respectively for the TM(TE) mode at the wavelength of 1.55 m by carefully optimizing the key structural parameters. In addition, taking the fabrication errors into account during the practical process, the fabrication tolerances to the proposed device are analyzed in detail and the performance is assessed by the extinction ratio and insertion loss. For demonstrating the transmission characteristics of the designed polarization (de) multipexing (P-DEMUX) device, the evolution along the propagation distance of the input mode through the designed P-DEMUX is also presented. The present polarization demultiplexer is compatible with the WDM systems on-chip based on microring resonators and can be easily introduced into the WDM system to further increase the optical interconnect capacity.
      通信作者: 肖金标, jbxiao@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 60978005)和江苏省自然科学基金(批准号: BK20141120)资助的课题.
      Corresponding author: Xiao Jin-Biao, jbxiao@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60978005), and the Jiangsu Provincial Natural Science Foundation, China (Grant No. BK20141120).
    [1]

    Vlasov Y A 2012 IEEE Commun. Mag. 50 s67

    [2]

    Kopp C, Bernabe S, Bakir B B, Fedeli J M, Orobtchouk R F, Porte S H, Zimmermann L, Tekin T 2011 IEEE J. Sel. Top. Quantum Electron. 17 498

    [3]

    Liu A S, Liao L, Chetrit Y, Hat B N, Rubin D, Panicca M 2010 IEEE J. Sel. Top. Quantum Electron. 16 23

    [4]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354

    [5]

    Deng L, Pang X D, Othman M B, Jensen J B, Zibar B, Yu X B, Liu D M, Monroy I T 2012 Opt. Express 20 4369

    [6]

    Sjdin M, Agrell E, Johannisson P, Lu G W, Andrekson P A, Karlsson M 2011 J. Lightwave Technol. 29 1219

    [7]

    Guan H, Novack A, Streshinsky M, Shi R, Fang Q, Lim A E J, Lo G Q, Tom B J, Hochberg M 2014 Opt. Express 22 2489

    [8]

    Dai D X, Wang Z, Bowers J E 2011 Opt. Letters 36 2590

    [9]

    Yu Y Y, Li X Y, Sun B, He K P 2015 Chin. Phys. B 24 068702

    [10]

    Yang B K, Shin S Y, Zhang D M 2009 IEEE Photonics Technol. Lett. 21 432

    [11]

    Dai D X, Wang Z, Peters J, Bowers J E 2012 IEEE Photonics Technol. Lett. 24 673

    [12]

    Gerosa R M, Biazoli C R, Cordeiro C, Matos C 2012 Opt. Express 20 28981

    [13]

    Ye W N, Xu D X, Janz S, Waldron P, Cheben P, Tarr N G 2007 Opt. Letters 32 1492

    [14]

    Xiong F, Zhong W D, Kim H 2012 J. Lightwave Technol. 30 2329

    [15]

    Xu Q F, Fattal D, Beausoleil R G 2008 Opt. Express 16 4309

    [16]

    Guha B, Kyotoku B B C, Lipson M 2010 Opt. Express 18 3487

    [17]

    Bogaerts W, DE H P, Van V T, De K V, Kumar S S, Claes T, Dumon P, Bienstman P, Van D T, Baeta R 2012 Laser Photonics Rev. 6 47

    [18]

    Xiang X Y, Wang K R, Yuan J H, Jin B Y, Sang X Z, Yu C X 2014 Chin. Phys. B 23 034206

    [19]

    Ding R, Liu Y, Li Q, Xuan Z, Ma Y J, Yang Y S, Lim A E J, Lo G Q, Bergman K, Baehr J T, Hochberg M2014 IEEE Photonics J. 6 1

    [20]

    Park S, Kim K J, Kim I G, Kim G 2011 Opt. Express 19 13531

    [21]

    Cai X L, Huang D X, Zhang X L 2006 Opt. Express 14 11304

    [22]

    Almeida V R, Xu Q F, Barrios C A, Lipson M 2004 Opt. Letters 29 1209

    [23]

    Nacer S, Aissat A 2012 Opt. Quantum Electron. 44 35

    [24]

    Xiao J B, Liu X, Sun X H 2008 Jpn. J. Appl. Phys. 47 3748

    [25]

    Saitoh K, Koshiba M 2009 Opt. Express 17 19225

    [26]

    Xu Y, Xiao J B, Sun X H 2014 J. Lightwave Technol. 32 4282

    [27]

    Xu Y, Xiao J B, Sun X H 2015 IEEE Photonics Technol. Lett. 27 654

    [28]

    Xiao J B, Xu Y, Wang J Y, Sun X H 2014 Appl. Opt. 53 2390

    [29]

    Ishizaka Y, Saitoh K, Koshiba M 2013 IEEE Photonics J. 5 6601809

    [30]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [31]

    Xiao J B, Ni H X, Sun X H 2008 Opt. Letters 33 1848

    [32]

    Okamoto K 2010 Fundamentals of optical waveguides (San Diego: Academic Press) pp159-203

    [33]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [34]

    Sullivan D M 2013 Electromagnetic simulation using the FDTD method (New York: Wiley) pp85-96

    [35]

    Chew W C, Liu Q H 1996 J. Comput. Acoust. 4 341

  • [1]

    Vlasov Y A 2012 IEEE Commun. Mag. 50 s67

    [2]

    Kopp C, Bernabe S, Bakir B B, Fedeli J M, Orobtchouk R F, Porte S H, Zimmermann L, Tekin T 2011 IEEE J. Sel. Top. Quantum Electron. 17 498

    [3]

    Liu A S, Liao L, Chetrit Y, Hat B N, Rubin D, Panicca M 2010 IEEE J. Sel. Top. Quantum Electron. 16 23

    [4]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354

    [5]

    Deng L, Pang X D, Othman M B, Jensen J B, Zibar B, Yu X B, Liu D M, Monroy I T 2012 Opt. Express 20 4369

    [6]

    Sjdin M, Agrell E, Johannisson P, Lu G W, Andrekson P A, Karlsson M 2011 J. Lightwave Technol. 29 1219

    [7]

    Guan H, Novack A, Streshinsky M, Shi R, Fang Q, Lim A E J, Lo G Q, Tom B J, Hochberg M 2014 Opt. Express 22 2489

    [8]

    Dai D X, Wang Z, Bowers J E 2011 Opt. Letters 36 2590

    [9]

    Yu Y Y, Li X Y, Sun B, He K P 2015 Chin. Phys. B 24 068702

    [10]

    Yang B K, Shin S Y, Zhang D M 2009 IEEE Photonics Technol. Lett. 21 432

    [11]

    Dai D X, Wang Z, Peters J, Bowers J E 2012 IEEE Photonics Technol. Lett. 24 673

    [12]

    Gerosa R M, Biazoli C R, Cordeiro C, Matos C 2012 Opt. Express 20 28981

    [13]

    Ye W N, Xu D X, Janz S, Waldron P, Cheben P, Tarr N G 2007 Opt. Letters 32 1492

    [14]

    Xiong F, Zhong W D, Kim H 2012 J. Lightwave Technol. 30 2329

    [15]

    Xu Q F, Fattal D, Beausoleil R G 2008 Opt. Express 16 4309

    [16]

    Guha B, Kyotoku B B C, Lipson M 2010 Opt. Express 18 3487

    [17]

    Bogaerts W, DE H P, Van V T, De K V, Kumar S S, Claes T, Dumon P, Bienstman P, Van D T, Baeta R 2012 Laser Photonics Rev. 6 47

    [18]

    Xiang X Y, Wang K R, Yuan J H, Jin B Y, Sang X Z, Yu C X 2014 Chin. Phys. B 23 034206

    [19]

    Ding R, Liu Y, Li Q, Xuan Z, Ma Y J, Yang Y S, Lim A E J, Lo G Q, Bergman K, Baehr J T, Hochberg M2014 IEEE Photonics J. 6 1

    [20]

    Park S, Kim K J, Kim I G, Kim G 2011 Opt. Express 19 13531

    [21]

    Cai X L, Huang D X, Zhang X L 2006 Opt. Express 14 11304

    [22]

    Almeida V R, Xu Q F, Barrios C A, Lipson M 2004 Opt. Letters 29 1209

    [23]

    Nacer S, Aissat A 2012 Opt. Quantum Electron. 44 35

    [24]

    Xiao J B, Liu X, Sun X H 2008 Jpn. J. Appl. Phys. 47 3748

    [25]

    Saitoh K, Koshiba M 2009 Opt. Express 17 19225

    [26]

    Xu Y, Xiao J B, Sun X H 2014 J. Lightwave Technol. 32 4282

    [27]

    Xu Y, Xiao J B, Sun X H 2015 IEEE Photonics Technol. Lett. 27 654

    [28]

    Xiao J B, Xu Y, Wang J Y, Sun X H 2014 Appl. Opt. 53 2390

    [29]

    Ishizaka Y, Saitoh K, Koshiba M 2013 IEEE Photonics J. 5 6601809

    [30]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [31]

    Xiao J B, Ni H X, Sun X H 2008 Opt. Letters 33 1848

    [32]

    Okamoto K 2010 Fundamentals of optical waveguides (San Diego: Academic Press) pp159-203

    [33]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [34]

    Sullivan D M 2013 Electromagnetic simulation using the FDTD method (New York: Wiley) pp85-96

    [35]

    Chew W C, Liu Q H 1996 J. Comput. Acoust. 4 341

  • [1] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [2] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器. 物理学报, 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [3] 王晓凯, 李建设, 李曙光, 郭英, 孟潇剑, 汪国瑞, 王璐瑶, 李增辉, 赵原源, 丁钰鑫. 一种基于三芯光子晶体光纤的宽带模分复用器的设计与研究. 物理学报, 2022, 71(4): 044206. doi: 10.7498/aps.71.20211187
    [4] 李长亮, 陈智辉, 冯光, 王晓伟, 杨毅彪, 费宏明, 孙非, 刘一超. 基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测. 物理学报, 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [5] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [6] 王晓凯, 李建设, 李曙光, 郭英, 孟潇剑, 汪国瑞, 王璐瑶, 李增辉, 赵原源, 丁钰鑫. 一种基于三芯光子晶体光纤的宽带模分复用器的设计与研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211187
    [7] 汪静丽, 陈子玉, 陈鹤鸣. 基于夹层结构的偏振无关1×2定向耦合型解复用器的设计. 物理学报, 2021, 70(1): 014202. doi: 10.7498/aps.70.20200721
    [8] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [9] 涂鑫, 陈震旻, 付红岩. 硅基光波导开关技术综述. 物理学报, 2019, 68(10): 104210. doi: 10.7498/aps.68.20190011
    [10] 肖金标, 王登峰. 硅基槽式纳米线多模干涉型模阶数转换器全矢量分析. 物理学报, 2017, 66(7): 074203. doi: 10.7498/aps.66.074203
    [11] 周雯, 陈鹤鸣. 基于磁光效应的二维三角晶格光子晶体模分复用器. 物理学报, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [12] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟. 结构参数对串联微环谐振腔编解码器性能的影响. 物理学报, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [13] 周培基, 李智勇, 俞育德, 余金中. 硅基光子集成研究进展. 物理学报, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [14] 曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武. 基于Add-drop型微环谐振腔的硅基高速电光调制器设计. 物理学报, 2013, 62(19): 194210. doi: 10.7498/aps.62.194210
    [15] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [16] 张佳, 徐旭明, 何灵娟, 于天宝, 郭浩. 基于光子晶体共振耦合的四波长波分复用/解复用器. 物理学报, 2012, 61(5): 054213. doi: 10.7498/aps.61.054213
    [17] 蔡鑫伦, 黄德修, 张新亮. 基于全矢量模式匹配法的三维弯曲波导本征模式计算. 物理学报, 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268
    [18] 秦小芸, 黄弼勤, 陈海星, 杨立功, 顾培夫. 多周期双啁啾镜结构的空间解波分复用器. 物理学报, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [19] 李强法. 缓变波导开放谐振腔的理论分析. 物理学报, 1980, 29(11): 1405-1415. doi: 10.7498/aps.29.1405
    [20] 林为干. 矩形波导与圆柱波导或圆柱谐振腔间的小孔耦合. 物理学报, 1959, 15(7): 368-376. doi: 10.7498/aps.15.368
计量
  • 文章访问数:  5034
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-23
  • 修回日期:  2015-05-11
  • 刊出日期:  2015-10-05

/

返回文章
返回