搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于夹层结构的偏振无关1×2定向耦合型解复用器的设计

汪静丽 陈子玉 陈鹤鸣

引用本文:
Citation:

基于夹层结构的偏振无关1×2定向耦合型解复用器的设计

汪静丽, 陈子玉, 陈鹤鸣

Design of polarization-insensitive 1×2 directional coupler demultiplexer based on sandwiched structure

Wang Jing-Li, Chen Zi-Yu, Chen He-Ming
PDF
HTML
导出引用
  • 提出一种基于夹层结构的偏振无关1×2定向耦合型解复用器, 用于分离1310 nm和1550 nm两个波长. 通过合理选择夹层结构芯区的折射率及波导间隙, 可以调节同一波长两个正交偏振模的耦合长度相等, 实现偏振无关; 通过合理选择夹层结构波导宽度, 可以使两个波长分别从不同输出波导端口输出, 实现解复用功能. 运用三维有限时域差分法进行建模仿真, 对结构参数进行优化, 并对器件性能进行了分析. 结果表明: 该器件定向耦合波导的长度为23 μm, 插入损耗低至0.1 dB, 输出波导间的串扰低至–26.23 dB, 3 dB带宽可达290 nm和200 nm. 另外, 本文提出的器件采用Si3N4/SiO2平台, 可有效减小波导尺寸, 提高集成度, 不仅实现了偏振无关, 而且结构紧凑、损耗低, 在未来的集成光路中具有潜在的应用价值.
    An ultra-compact 1×2 demultiplexer based on directional coupler (DC) waveguide is proposed to separate the 1310 nm wavelength from 1550 nm wavelength, in which a new Si3N4/SiNx/Si3N4 sandwiched structure is used to realize polarization insensitivity. Firstly, the new sandwiched structure is designed to be polarization-independent. The coupling lengths of two orthogonal polarization modes at the same wavelength versus the gap between two parallel SiNx waveguides g1 are calculated with several groups of structure parameters of the demultiplexer. The result shows that the coupling lengths for the two orthogonal polarization modes at the same wavelength can be identical by choosing the proper g1. Then, how to realize the function of wavelength separation is studied. When one wavelength propagates at even multiple of coupling length and the other wavelength propagates at odd multiple of coupling length, and vice versa, the two working wavelengths will output from different output ports, thereby the two wavelengths are successfully separated. Under the premise of satisfying such conditions, a comparison of size and performance among the devices with different groups of structure parameters is given to find the best one. The demultiplexer based on Si3N4/SiO2 platform has a compact structure, easy integration and good tolerance. Three-dimensional(3D) finite-difference time-domain method is used for simulation, and the results show that the length of the DC waveguide is only 23 μm; the insertion loss and crosstalk are as low as 0.1 dB and–26.23 dB respectively; a broad 3-dB bandwidth of 200 nm is achieved. To demonstrate the transmission characteristics of the demultiplexer, the evolution of the excited fundamental mode in the demultiplexer is also given. The novel demultiplexer is polarization-independent and can work at 1310 nm and 1550 nm wavelengths simultaneously. It has a potential application value in future integrated optical circuits.
      通信作者: 汪静丽, jlwang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61571237)、江苏省自然科学基金(批准号: BK20151509)、南京邮电大学校级科研基金(批准号: NY217047)和横向课题(批准号: 2017外65)资助的课题
      Corresponding author: Wang Jing-Li, jlwang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571237), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151509), NUPTSF of China (Grant No. NY217047), and the Horizontal Program of China (Grant No. 2017 external 65)
    [1]

    Walker R G, Urquhart J, Bennion I, Carter A C 1990 IEE P-Optoelectron 137 33Google Scholar

    [2]

    Zhang S, Ji W, Yin R, Li X, Gong Z, Lv L 2018 IEEE Photonics Technol. Lett. 30 107Google Scholar

    [3]

    Shih T T, Wu Y D, Lee J J 2009 IEEE Photonics Technol. Lett. 21 18Google Scholar

    [4]

    Hibino Y 2002 IEEE J. Sel. Top. Quantum Electron. 8 1090Google Scholar

    [5]

    Song J H, Lim J H, Kim R K, ET AL 2005 IEEE Photonics Technol. Lett. 17 2607Google Scholar

    [6]

    Song J H, Kim K Y, Cho J, ET AL 2005 IEEE Photonics Technol. Lett. 17 1668Google Scholar

    [7]

    刘耀东, 李志华, 余金中 2019 物理 48 82Google Scholar

    Liu Y D, Li Z H, Yu J Z 2019 Physics 48 82Google Scholar

    [8]

    Roeloffzen C G H, Hoekman M, Klein E J, ET AL 2018 IEEE J. Sel. Top. Quantum Electron. 24 121

    [9]

    Sacher W D, Huang Y, Liang D, ET AL 2014 Optical Fiber Communications Conference & Exhibition. IEEE, San Francisco, CA, USA, March 9–13, 2014 pTh1A.3

    [10]

    Gupta R K, Chandran S, Krishna B 2018 3 rd International Conference on Microwave and Photonics, Dhanbad, India, February 9–11, 2018 p1

    [11]

    Chen J Y, Shi Y C 2017 J. Lightwave Technol. 35 5260Google Scholar

    [12]

    Xu H N, Shi Y C 2017 IEEE Photonics Technol. Lett. 29 1265Google Scholar

    [13]

    Shi Y C, Anand S, He S L 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference, Shanghai, China, October 30–November 2, 2018 p1

    [14]

    Chen J Y, Liu L, Shi Y C 2017 IEEE Photonics Technol. Lett. 29 1975Google Scholar

    [15]

    Shi Y C, Anand S, He S L 2009 J. Lightwave Technol. 27 1443Google Scholar

    [16]

    Hardy A, Streifer W 1985 J.Lightwave Technol. LT-3 1135

    [17]

    Chen Y, Joines W T 2003 Opt. Commun. 228 319Google Scholar

    [18]

    Fujisawa T, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1246Google Scholar

    [19]

    Chiang K S, Liu Q 2011 IEEE Photonics Technol. Lett. 23 1277Google Scholar

    [20]

    汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

    [21]

    Lee C C, Chen H L, Hsu J C, Tien C L 1999 Appl. Opt. 38 2078Google Scholar

    [22]

    邹祥云, 苑进社, 蒋一祥 2012 物理学报 61 148106Google Scholar

    Zou X Y, Yuan J S, Jiang Y X 2012 Acta Phys. Sin. 61 148106Google Scholar

    [23]

    Wang Q, He S L 2003 J. Opt. A: Pure Appl. Opt. 5 449Google Scholar

  • 图 1  (a) 夹层结构示意图; (b) TE偏振模在夹层波导中的场分布(n0 > n1); (c) TM偏振模在夹层波导中的场分布(n0 > n1)

    Fig. 1.  (a) schematic configuration of the sandwiched structure; (b) field distributions for the TE fundamental mode in a sandwiched waveguide (n0 > n1); (c) field distributions for the TM fundamental mode in a sandwiched waveguide(n0 > n1).

    图 2  解复用器结构示意图 (a) 俯视图; (b) DC波导截面示意图

    Fig. 2.  Schematic configuration of the demultiplexer structure: (a) Top view; (b) cross section of the DC waveguide.

    图 3  W0 = 0.6 μm, W1 = 0.7 μm, g1 = 0.1 μm时, (a) Lc, (b) ΔLc(λ)随n(SiNx)的变化关系

    Fig. 3.  (a) Lc, (b) ΔLc(λ) as a function of n(SiNx) when W0 = 0.6 μm, W1 = 0.7 μm, g1 = 0.1 μm.

    图 4  当 (a) W0 = 0.4 µm, W1 = 0.6 µm, (b) W0 = 0.4 µm, W1 = 0.7 µm, (c) W0 = 0.5 µm, W1 = 0.7 µm, (d) W0 = 0.5 µm, W1 = 0.8 µm时, Lcg1的变化关系

    Fig. 4.  Lc as a function of g1 when (a) W0 = 0.4 µm, W1 = 0.6 µm, (b) W0 = 0.4 µm, W1 = 0.7 µm, (c) W0 = 0.5 µm, W1 = 0.7 µm, (d) W0 = 0.5 µm, W1 = 0.8 µm.

    图 5  当 (a) W0 = 0.4 µm, W1 = 0.6 µm, (b) W0 = 0.4 µm, W1 = 0.7 µm, (c) W0 = 0.5 µm, W1 = 0.7 µm, (d) W0 = 0.5 µm, W1 = 0.8 µm时, ΔLc(λ)随g1的变化关系

    Fig. 5.  ΔLc(λ) as a function of g1 when (a) W0 = 0.4 µm, W1 = 0.6 µm, (b) W0 = 0.4 µm, W1 = 0.7 µm, (c) W0 = 0.5 µm, W1 = 0.7 µm, (d) W0 = 0.5 µm, W1 = 0.8 µm.

    图 6  偏振无关1×2 DC解复用器件的光场分布图 (a) 1310 nm, TE波; (b) 1310 nm, TM波; (c) 1550 nm, TE波; (d) 1550 nm,TM波

    Fig. 6.  Field distributions of the DC demultiplexer: (a) Quasi-TE mode, at 1310 nm; (b) quasi-TM mode, at 1310 nm; (c) quasi-TE mode, at 1550 nm; (d) quasi-TM mode, at 1550 nm.

    图 7  Port2和Port3两端口归一化输出光功率随波段的变化 (a) 1310 nm波段; (b) 1550 nm波段

    Fig. 7.  Output powers (normalized to the input power) from Ports 2 and 3 as the wavelength varies: (a) 1310 nm band; (b) 1550 nm band.

    表 1  DC型偏振无关解复用器的结构参数

    Table 1.  Structural parameters of the polarization-insensitive DC demultiplexer.

    结构参数Pg1/µmLDC/µm
    W0 = 0.4 µm, W1 = 0.6 µm00.0826.5
    W0 = 0.4 µm, W1 = 0.7 µm20.0827
    W0 = 0.4 µm, W1 = 0.8 µm00.0823
    W0 = 0.5 µm, W1 = 0.7 µm20.0726
    W0 = 0.5 µm, W1 = 0.8 µm20.0637
    W0 = 0.5 µm, W1 = 0.9 µm00.0735
    下载: 导出CSV

    表 2  DC型偏振无关解复用器的透过率

    Table 2.  Transmittance of the polarization-insensitive DC demultiplexer.

    结构参数T(1310
    nm, TE)
    T(1310
    nm, TM)
    T(1550
    nm, TE)
    T(1550
    nm, TM)
    W0 = 0.4 µm, W1 = 0.6 µm0.9420.9310.810.8
    W0 = 0.4 µm, W1 = 0.7 µm0.9410.9360.820.814
    W0 = 0.4 µm, W1 = 0.8 µm0.9770.9640.930.84
    W0 = 0.5 µm, W1 = 0.7 µm0.9250.950.840.87
    W0 = 0.5 µm, W1 = 0.8 µm0.960.9640.9070.848
    W0 = 0.5 µm, W1 = 0.9 µm0.980.9670.8530.916
    下载: 导出CSV

    表 3  偏振无关1 × 2 DC解复用器的性能参数

    Table 3.  Performances of the polarization-insensitive DC demultiplexer.

    性能参数IL/dBCT/dB
    1310 nm, TE0.1–20.92
    1310 nm, TM0.16–21.62
    1550 nm, TE0.32–26.23
    1550 nm, TM0.76–24.2
    下载: 导出CSV

    表 4  DC型偏振无关解复用器的性能参数比较

    Table 4.  Comparison of performances of the polarization-insensitive DC demultiplexer.

    器件类型(LDC/面积)/(µm/µm2)$\overline {{\rm{IL}}} $/dB$\overline {{\rm{CT}}} $/dB
    本文230.335–23.24
    文献[14]40 × 25(弯曲波导结构)0.33–22.1
    文献[15]48.20.225–21.25
    下载: 导出CSV
  • [1]

    Walker R G, Urquhart J, Bennion I, Carter A C 1990 IEE P-Optoelectron 137 33Google Scholar

    [2]

    Zhang S, Ji W, Yin R, Li X, Gong Z, Lv L 2018 IEEE Photonics Technol. Lett. 30 107Google Scholar

    [3]

    Shih T T, Wu Y D, Lee J J 2009 IEEE Photonics Technol. Lett. 21 18Google Scholar

    [4]

    Hibino Y 2002 IEEE J. Sel. Top. Quantum Electron. 8 1090Google Scholar

    [5]

    Song J H, Lim J H, Kim R K, ET AL 2005 IEEE Photonics Technol. Lett. 17 2607Google Scholar

    [6]

    Song J H, Kim K Y, Cho J, ET AL 2005 IEEE Photonics Technol. Lett. 17 1668Google Scholar

    [7]

    刘耀东, 李志华, 余金中 2019 物理 48 82Google Scholar

    Liu Y D, Li Z H, Yu J Z 2019 Physics 48 82Google Scholar

    [8]

    Roeloffzen C G H, Hoekman M, Klein E J, ET AL 2018 IEEE J. Sel. Top. Quantum Electron. 24 121

    [9]

    Sacher W D, Huang Y, Liang D, ET AL 2014 Optical Fiber Communications Conference & Exhibition. IEEE, San Francisco, CA, USA, March 9–13, 2014 pTh1A.3

    [10]

    Gupta R K, Chandran S, Krishna B 2018 3 rd International Conference on Microwave and Photonics, Dhanbad, India, February 9–11, 2018 p1

    [11]

    Chen J Y, Shi Y C 2017 J. Lightwave Technol. 35 5260Google Scholar

    [12]

    Xu H N, Shi Y C 2017 IEEE Photonics Technol. Lett. 29 1265Google Scholar

    [13]

    Shi Y C, Anand S, He S L 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference, Shanghai, China, October 30–November 2, 2018 p1

    [14]

    Chen J Y, Liu L, Shi Y C 2017 IEEE Photonics Technol. Lett. 29 1975Google Scholar

    [15]

    Shi Y C, Anand S, He S L 2009 J. Lightwave Technol. 27 1443Google Scholar

    [16]

    Hardy A, Streifer W 1985 J.Lightwave Technol. LT-3 1135

    [17]

    Chen Y, Joines W T 2003 Opt. Commun. 228 319Google Scholar

    [18]

    Fujisawa T, Koshiba M 2006 IEEE Photonics Technol. Lett. 18 1246Google Scholar

    [19]

    Chiang K S, Liu Q 2011 IEEE Photonics Technol. Lett. 23 1277Google Scholar

    [20]

    汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

    [21]

    Lee C C, Chen H L, Hsu J C, Tien C L 1999 Appl. Opt. 38 2078Google Scholar

    [22]

    邹祥云, 苑进社, 蒋一祥 2012 物理学报 61 148106Google Scholar

    Zou X Y, Yuan J S, Jiang Y X 2012 Acta Phys. Sin. 61 148106Google Scholar

    [23]

    Wang Q, He S L 2003 J. Opt. A: Pure Appl. Opt. 5 449Google Scholar

  • [1] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [2] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性. 物理学报, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [3] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [4] 刘丹, 胡森. 可实现偏振无关单向传输的二维硅基环形孔光子晶体. 物理学报, 2019, 68(2): 024206. doi: 10.7498/aps.68.20181397
    [5] 吴倩, 张诸宇, 郭晓晨, 施伟华. 基于光子晶体光纤交叉敏感分离的磁场温度传感研究. 物理学报, 2018, 67(18): 184212. doi: 10.7498/aps.67.20180680
    [6] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [7] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [8] 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静. 基于旋转不变态的测量设备无关量子密钥分配协议研究. 物理学报, 2014, 63(17): 170303. doi: 10.7498/aps.63.170303
    [9] 赵顾颢, 赵尚弘, 幺周石, 郝晨露, 蒙文, 王翔, 朱子行, 刘丰. 偏振无关的旋光双反射结构的实验研究. 物理学报, 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [10] 王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫. 一种覆盖全通信波段的新型宽带偏振无关双芯光纤定向耦合器的研究. 物理学报, 2012, 61(15): 154207. doi: 10.7498/aps.61.154207
    [11] 钟琪, 韩奎, 沈晓鹏, 童星, 吴琼华, 李明雪, 吴玉喜. Archimedes 32,4,3,4结构光子晶体中与偏振无关的自准直分束器. 物理学报, 2010, 59(10): 7060-7065. doi: 10.7498/aps.59.7060
    [12] 保石, 罗春荣, 张燕萍, 赵晓鹏. 基于树枝结构单元的超材料宽带微波吸收器. 物理学报, 2010, 59(5): 3187-3191. doi: 10.7498/aps.59.3187
    [13] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [14] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [15] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
    [16] 马 宏, 朱光喜, 陈四海, 易新建. 金属有机化学气相外延生长1310nm偏振无关混合应变量子阱半导体光放大器研究. 物理学报, 2004, 53(12): 4257-4261. doi: 10.7498/aps.53.4257
    [17] 马 宏, 陈四海, 金锦炎, 易新建, 朱光喜. 1.55μm AlGaInAs-InP偏振无关半导体光放大器及其温度特性研究. 物理学报, 2004, 53(6): 1868-1872. doi: 10.7498/aps.53.1868
    [18] 张晓青, G.M.SESSLER, 夏钟福, 张冶文. Si基Si3N4/SiO2双层膜驻极体的电荷储存与输运. 物理学报, 2001, 50(2): 293-298. doi: 10.7498/aps.50.293
    [19] 孙永科, 衡成林, 王孙涛, 秦国刚, 马振昌, 宗婉华. Au/(SiO2/Si/SiO2)纳米双势垒/n+-Si结构的电致发光研究. 物理学报, 2000, 49(7): 1404-1408. doi: 10.7498/aps.49.1404
    [20] 段玉华, 张开明, 谢希德. β-C3N4,β-Si3N4和β-Ge3N4的能带结构. 物理学报, 1996, 45(3): 512-517. doi: 10.7498/aps.45.512
计量
  • 文章访问数:  5835
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-05-13
  • 上网日期:  2020-12-14
  • 刊出日期:  2021-01-05

/

返回文章
返回