搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于三芯光子晶体光纤的宽带模分复用器的设计与研究

王晓凯 李建设 李曙光 郭英 孟潇剑 汪国瑞 王璐瑶 李增辉 赵原源 丁钰鑫

引用本文:
Citation:

一种基于三芯光子晶体光纤的宽带模分复用器的设计与研究

王晓凯, 李建设, 李曙光, 郭英, 孟潇剑, 汪国瑞, 王璐瑶, 李增辉, 赵原源, 丁钰鑫

Design and research of a broadband mode-division multiplexer based on three-core photonic crystal fiber

Wang Xiao-Kai, Li Jian-She, Li Shu-Guang, Guo Ying, Meng Xiao-Jian, Wang Guo-Rui, Wang Lu-Yao, Li Zeng-Hui, Zhao Yuan-Yuan, Ding Yu-Xin
PDF
HTML
导出引用
  • 本文提出了一种基于非对称三芯光子晶体光纤的宽带模分复用器. 该器件主要是由位于光纤中心的可提供基模和高阶模传输的中心纤芯和分别位于中心纤芯两侧的可提供基模传输的2个旁芯构成. 根据光耦合理论, 在输入端对3个纤芯分别输入LP01模式的光, 在传输过程中左旁芯的LP01模式的光将逐步向中心纤芯耦合并转换为LP21模式传输, 而右旁芯中的LP01模式的光则逐步耦合并转换为中心纤芯中的LP31模式来传输. 通过对光纤结构的优化设计和光纤长度的选择, 使得在输出端同时完成旁芯LP01模向中心纤芯LP21和LP31模的最佳转换, 从而实现LP01、LP21和LP31 3种模式的光在中心纤芯中的复用. 反之, 若将该器件的输出端用作输入端则可以实现中心纤芯中3种模式的光向3个纤芯的解复用. 本文利用有限元法和光束传播法进行了优化设计和仿真, 并将光耦合理论与超模理论相结合进行了分析计算, 结果表明在1.49—1.63 μm的波段下, 该器件插入损耗最高为0.72 dB, 在中心波长1.55 μm处器件插入损耗为最低值0.543 dB, 远低于大家普遍采用的1 dB插入损耗的评价标准. 较低的插入损耗也为级联型多芯光子晶体光纤模分复用器设计提供了可能. 与现有的模分复用方案相比, 该器件的集成性更高, 受外界影响更小, 与多芯空分复用光纤搭配使用, 可以更好地提高模式转换效率和模式纯度, 降低耦合复杂度, 拓展通信容量.
    A broadband mode-division multiplexer based on asymmetric three-core photonic crystal fiber is proposed in this paper. The device is mainly composed of a central core, which can provide the transmission of fundamental mode and higher-order mode, and two side cores providing fundamental mode transmission. According to the theory of optical coupling, the LP01 mode light is input to the three fiber cores at the initial port separately, and in the transmission process the LP01 mode on the left side core will be coupled and converted into the LP21 mode light in the central core gradually. Similarly, the LP01 mode of the right side core is transformed into the LP31 mode of the center core. By optimizing the structural design and selecting the length of optical fiber, the best conversion from side core into central core can be completed at the output end simultaneously, thereby realizing the multiplexing of LP01, LP21 and LP31 modes in the central core. In the opposite direction, if the output end of the device is used as the initial port, the demultiplexing of three modes of light from the central core to the three cores can be realized. In thiswork, the finite element method and beam propagation method are used to optimize the simulation, and the optical coupling theory and supermode theory are combined to conduct analysis and calculation. The results show that at wavelength band from 1.49 μm to 1.63 μm, the maximum insertion loss of the device is 0.72 dB, and the lowest insertion loss is 0.543 dB at 1.55 μm, which is far lower than the general evaluation standard of 1 dB insertion loss. The low insertion loss also makes it possible to design cascaded multi-core photonic-crystal-fiber mode-division multiplexer. Compared with the existing mode-division multiplexing scheme, the device is more integrated and less affected by the external environment. When it is used with multi-core space division multiplexing fiber, it can better improve the mode-conversion efficiency and mode purity, reduce the coupling complexity and expand the communication capacity.
      通信作者: 李建设, jianshelee@ysu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2204001)、国家自然科学基金(批准号: 12074331)和河北省自然科学基金(批准号: F2020203050, F2017203193)资助的课题
      Corresponding author: Li Jian-She, jianshelee@ysu.edu.cn
    • Funds: Project supported by the National Key Research and Development Project, China(Grant No. 2019YFB2204001), the National Natural Science Foundation of China (Grant No. 12074331), and the Program of the Natural Science Foundation of Hebei Province, China (Grant Nos. F2020203050, F2017203193)
    [1]

    Ryf R, Bolle C, von Hoyningen-Huene. J 2011 ECOC Geneva, Switzerland, SEP 18–22, 2011.

    [2]

    Wang Y L, Zhang C, Fu S N, Zhang R, Shen L, Tang M, Liu D M 2019 Opt Express 27 27979Google Scholar

    [3]

    Shi J 2013 M. S. Dissertation (Changchun: Jilin University) (in Chinese) 石健 2013 硕士学位论文(长春: 吉林大学)

    [4]

    Liu Q Q, Zheng H J, Li X, Bai C L, Hu W S, Yu R Y 2018 Optoelectron. Lett. 5 336

    [5]

    Tsekrekos C P, Syvridis D 2014 J. Lightwave Technol. 32 2461Google Scholar

    [6]

    Liu Y, Dong Q H, Zheng H J, Li X, Bai C L, Hu W S, Li Y L, Wang X 2020 Opt. Commun. 469

    [7]

    Park K J, Song K Y, Kim Y K, Kim B Y 2014 OFC San Francisco, CA, MAR 09–13, 2014.

    [8]

    Chang S H, Chung H S, Fontaine N K, Ryf R, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2014 Opt Express 22 14229Google Scholar

    [9]

    Pang M, Xiao L M, Jin W, Cerqueira A 2012 J. Lightwave Technology. 30 1422Google Scholar

    [10]

    侯建平, 宁韬, 盖双龙, 李鹏, 皓建苹, 赵建林 2010 物理学报 59 4732Google Scholar

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732Google Scholar

    [11]

    张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰 2010 物理学报 59 3278Google Scholar

    Zhang M Y, Li S G, Yao Y Y, Zhang L, Fu B, Yin G B 2010 Acta Phys. Sin. 59 3278Google Scholar

    [12]

    Yu Y Y, Sun B 2018 Crystals 8 95Google Scholar

    [13]

    Cardona J A M, Cardona N D G, Valencia, E G, Trujillo P T, Vera E R 2019 Photonics. 7 1Google Scholar

    [14]

    Zhang Y J, Wang Y, Cai S Y, Lan M Y, Yu S, Gu W Y 2015 Photonics Res. 3 220Google Scholar

    [15]

    Yang J 2017 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [杨静 2017 硕士学位论文 (南京: 南京邮电大学)]

    [16]

    孙兵, 陈明阳, 周骏, 余学权, 张永康, 于荣金 2010 光学学报 6 1581

    Sun B, Chen M Y, Zhou J, Yu X Q, Zhang Y K, Yu R J 2010 Acta Optica Sinica 6 1581

    [17]

    Rifat A A, Mahdiraji G A, Shee Y G, Shawon M J, Adikan F R M 2016 Procedia. Eng. 140 1Google Scholar

    [18]

    Kaliteevskiy N A, Korolev A E, Koreshkov K S, Nazarov V N, Sterlingov P M 2013 Opt. Spectrosc. 114 913Google Scholar

    [19]

    Cai S Y, Yu S, Wang Y, Lan M Y, Gao L, Gu W Y 2016 PTL. 28 3Google Scholar

    [20]

    F. Bagci 2013 Opt. Pura. Apl. 46 265Google Scholar

    [21]

    季珂, 陈鹤鸣 2018 红外与毫米波学报 37 50Google Scholar

    Ji K, Chen H M 2018 J. Infrared Millim. W. 37 50Google Scholar

    [22]

    T. Joseph, J. John 2019 J. Op. t Soc. Amer. B. 36 1987Google Scholar

  • 图 1  (a)三芯光子晶体光纤模分复用器剖面结构; (b)分体设计的中心纤芯波导剖面结构; (c)分体设计的旁芯波导剖面结构

    Fig. 1.  (a) Profile structure of three core PCF mode division multiplexer; (b) section structure of central core waveguide designed by split; (c) section structure of side core waveguide designed by split.

    图 2  中心纤芯中LP21和LP31模式的有效折射率以及两模式间的有效折射率差Δneff随传输波长的变化关系

    Fig. 2.  The relationship between effective refractive index of LP21 and LP31 modes in central core, effective refractive index difference Δneff of two modes and the transmission wavelength.

    图 3  (a)不同d1条件下旁芯基模的有效折射率随波长的变化关系; (b)不同折射率差条件下旁芯基模的有效折射率随波长的变化关系

    Fig. 3.  (a) The relationship between the effective refractive index of the side core mode and the wavelength under different d1 conditions; (b) the relationship between the effective refractive index of the side core mode and the wavelength under different refractive index difference of the doped rod.

    图 4  (a)不同d1, d2条件下旁芯基模的有效折射率随传输波长的变化关系; (b)1.55 μm波长下旁芯基模的有效折射率随掺杂棒折射率差的变化关系; (c)旁芯基模与中心纤芯各对应待转换模发生相位匹配

    Fig. 4.  (a) The relationship between the effective refractive index of the side core fundamental mode and the transmission wavelength under different d1 and d2 conditions; (b) the relationship between the effective refractive index of the side core fundamental mode and the refractive index difference of the doped rod at 1.55 μm wavelength; (c) phase matching occurs between the basic mode of the side core and the corresponding mode to be converted of the central core.

    图 5  三维与二维绘图下的超模 (a) LP01-LP21奇模; (b) LP01-LP21偶模; (c) LP01-LP31奇模; (d) LP01-LP31偶模

    Fig. 5.  Supermodes in 3D and 2D drawing groups: (a) LP01-LP21 odd mode (b) LP01-LP21 even mode (c) LP01-LP31 odd mode (d) LP01-LP31 even mode.

    图 6  功率监视器下的模式转换复用过程 (a)等高曲线绘图; (b)能量曲线绘图

    Fig. 6.  Mode conversion multiplexing process under power monitor: (a) Contour plot; (b) energy plot

    图 7  (a)不同器件长度下的插入损耗随波长的变化关系; (b)不同器件长度下的高阶模转换效率随波长的变化关系

    Fig. 7.  (a) Relationship between insertion loss and wavelength in different device lengths; (b) wavelength dependence of higher-order mode conversion efficiency for different device lengths.

    图 8  模分复用器的信号输入示意图

    Fig. 8.  Schematic diagram of input signal of mode division multiplexer.

    表 1  本文所提出的模分复用器的特性与先前报导的器件间的对比.

    Table 1.  Comparison of the characteristics of the proposed mode division multiplexer with those of the previously reported devices.

    器件类型主要功能工作波段插入损耗模式转换效率器件长度制作难
    易度
    参考
    文献
    椭圆芯五模群选择性
    光子灯笼复用器
    10种空间模式的转换复用1530—1565 nm0.1—0.38 dB–0.79—0.19 dB锥区9 cm[2]
    三维对称少模光纤
    (FMF)耦合器
    6种模式的转换复用1530—1565 nm1.6 dB平均值–1.82 dB
    6.26 cm较难[3]
    少模环芯光纤模分
    多路复用器
    3种模式的转换复用1530—1565 nm < –1.39 dB3.23 cm较难[4]
    非对称双芯光子晶体光
    纤可调谐模式转换器
    可调谐, 单一模式的转换1278—1317 nm–0.043 dB(99%)3.15 mm容易[9]
    三芯全固体光子晶体
    光纤模式转换器
    3种模式的转换复用1550 nm–0.46 dB6.16 mm容易[10]
    非对称三芯光子晶体
    光纤宽带模分复用器
    3种模式的转换复用1490—1630 nm < 0.7 dB–0.19—1.2 dB4.9 mm较容易本文
    下载: 导出CSV
  • [1]

    Ryf R, Bolle C, von Hoyningen-Huene. J 2011 ECOC Geneva, Switzerland, SEP 18–22, 2011.

    [2]

    Wang Y L, Zhang C, Fu S N, Zhang R, Shen L, Tang M, Liu D M 2019 Opt Express 27 27979Google Scholar

    [3]

    Shi J 2013 M. S. Dissertation (Changchun: Jilin University) (in Chinese) 石健 2013 硕士学位论文(长春: 吉林大学)

    [4]

    Liu Q Q, Zheng H J, Li X, Bai C L, Hu W S, Yu R Y 2018 Optoelectron. Lett. 5 336

    [5]

    Tsekrekos C P, Syvridis D 2014 J. Lightwave Technol. 32 2461Google Scholar

    [6]

    Liu Y, Dong Q H, Zheng H J, Li X, Bai C L, Hu W S, Li Y L, Wang X 2020 Opt. Commun. 469

    [7]

    Park K J, Song K Y, Kim Y K, Kim B Y 2014 OFC San Francisco, CA, MAR 09–13, 2014.

    [8]

    Chang S H, Chung H S, Fontaine N K, Ryf R, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2014 Opt Express 22 14229Google Scholar

    [9]

    Pang M, Xiao L M, Jin W, Cerqueira A 2012 J. Lightwave Technology. 30 1422Google Scholar

    [10]

    侯建平, 宁韬, 盖双龙, 李鹏, 皓建苹, 赵建林 2010 物理学报 59 4732Google Scholar

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732Google Scholar

    [11]

    张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰 2010 物理学报 59 3278Google Scholar

    Zhang M Y, Li S G, Yao Y Y, Zhang L, Fu B, Yin G B 2010 Acta Phys. Sin. 59 3278Google Scholar

    [12]

    Yu Y Y, Sun B 2018 Crystals 8 95Google Scholar

    [13]

    Cardona J A M, Cardona N D G, Valencia, E G, Trujillo P T, Vera E R 2019 Photonics. 7 1Google Scholar

    [14]

    Zhang Y J, Wang Y, Cai S Y, Lan M Y, Yu S, Gu W Y 2015 Photonics Res. 3 220Google Scholar

    [15]

    Yang J 2017 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [杨静 2017 硕士学位论文 (南京: 南京邮电大学)]

    [16]

    孙兵, 陈明阳, 周骏, 余学权, 张永康, 于荣金 2010 光学学报 6 1581

    Sun B, Chen M Y, Zhou J, Yu X Q, Zhang Y K, Yu R J 2010 Acta Optica Sinica 6 1581

    [17]

    Rifat A A, Mahdiraji G A, Shee Y G, Shawon M J, Adikan F R M 2016 Procedia. Eng. 140 1Google Scholar

    [18]

    Kaliteevskiy N A, Korolev A E, Koreshkov K S, Nazarov V N, Sterlingov P M 2013 Opt. Spectrosc. 114 913Google Scholar

    [19]

    Cai S Y, Yu S, Wang Y, Lan M Y, Gao L, Gu W Y 2016 PTL. 28 3Google Scholar

    [20]

    F. Bagci 2013 Opt. Pura. Apl. 46 265Google Scholar

    [21]

    季珂, 陈鹤鸣 2018 红外与毫米波学报 37 50Google Scholar

    Ji K, Chen H M 2018 J. Infrared Millim. W. 37 50Google Scholar

    [22]

    T. Joseph, J. John 2019 J. Op. t Soc. Amer. B. 36 1987Google Scholar

  • [1] 王晓凯, 李建设, 李曙光, 郭英, 孟潇剑, 汪国瑞, 王璐瑶, 李增辉, 赵原源, 丁钰鑫. 一种基于三芯光子晶体光纤的宽带模分复用器的设计与研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211187
    [2] 戴震飞, 姜文帆, 王玲, 陈明阳, 高永锋, 任乃飞. 基于高折射率液体填充的花瓣形微结构光纤可调滤模特性. 物理学报, 2019, 68(8): 084206. doi: 10.7498/aps.68.20181890
    [3] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究. 物理学报, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [4] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [5] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [6] 盛新志, 娄淑琴, 尹国路, 鹿文亮, 王鑫. 一种与标准单模光纤高适配的低弯曲损耗光子晶体光纤. 物理学报, 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [7] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [8] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [9] 陈瑰, 蒋作文, 彭景刚, 李海清, 戴能利, 李进延. 空气包层大模场面积掺镱光子晶体光纤研究. 物理学报, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [10] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [11] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [12] 郭艳艳, 侯蓝田. 全固态八边形大模场光子晶体光纤的设计. 物理学报, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [13] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [14] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [15] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [16] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [17] 廖栽宜, 赵玲娟, 张云霄, 边静, 潘教青, 王圩. 一种利用光电流和光透过曲线测量电吸收调制器插入损耗因素的方法. 物理学报, 2009, 58(5): 3135-3139. doi: 10.7498/aps.58.3135
    [18] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [19] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [20] 李宏成, 王瑞兰, 魏 斌, 郑东宁. 高温超导膜微波表面电阻Rs对微波滤波器插入损耗的贡献. 物理学报, 2005, 54(1): 359-363. doi: 10.7498/aps.54.359
计量
  • 文章访问数:  5448
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-10-21
  • 上网日期:  2022-02-12
  • 刊出日期:  2022-02-20

/

返回文章
返回