-
波长调制-直接吸收光谱(WM-DAS)同时具有直接吸收光谱(DAS)可测量吸收率函数和波长调制光谱(WMS)高信噪比的优点, 本文首先采用WM-DAS光谱, 在50 cm光程和室温低压下, CO分子近红外4300.7 cm–1谱线吸收率检测限低至4 × 10–7 (200 s); 然后结合120 m长光程Herriott池, 在室温大气压下, 吸收率函数拟合残差标准差达到5.1 × 10–5 (1 s). 最后利用长光程WM-DAS测量系统, 对不同浓度(体积分数为0.44 × 10–6—9.6 × 10–6)CO进行了动态测量, 并将其与腔衰荡光谱(CRDS)进行比较; 实验结果表明: 本文采用的长光程WM-DAS与CRDS方法测量结果相同, 其中长光程WM-DAS系统CO浓度检测限低至0.9 × 10–9 (200 s), 系统简单且测量速度远快于CRDS. 与此同时, 利用建立的长光程WM-DAS测量系统连续监测1个月时间内大气痕量CO浓度及其变化趋势, 测量结果与中国环境监测总站测量结题高度一致.
-
关键词:
- 波长调制-直接吸收光谱 /
- 腔衰荡光谱 /
- 吸收率函数 /
- CO浓度监测
Wavelength modulation-direct absorption spectroscopy (WM-DAS) has the advantages of both direct absorption spectroscopy (DAS) measurable absorptivity function and wavelength modulation spectrum (WMS) with high signal-to-noise ratio (SNR). In this paper, the WM-DAS spectrum is used to measure the absorptivity of 4300.7 cm–1 line of CO molecule and the detection limit is as low as 4 × 10–7 (200 s) at 0.5 m optical path, room temperature and low pressure. Then, through combining the WM-DAS spectrum with a 120 m long optical path Herriott cell, at room temperature and atmospheric pressure, the standard deviation of the fitting residual error of the absorptivity function is reduced down to ~5.1 × 10–5 (1 s). Finally, different concentrations of CO are continuously monitored by long-path WM-DAS measurement system, and compared with the results obtained from the cavity ring-down spectroscopy (CRDS). The experimental results show that the measurement results from the long-path WM-DAS and CRDS method are the same. The detection limit of CO concentration in long-path WM-DAS system is as low as 0.9 ppb (200 s), and the WM-DAS system is simple and the measurement speed is much faster than CRDS. At the same time, the long-path WM-DAS system is used to continuously monitor the atmospheric trace CO concentration and trend for one month, and the measured results are highly consistent with those from the China Environmental Monitoring Station.-
Keywords:
- wavelength modulation-direct absorption spectroscopy /
- cavity ring down spectroscopy /
- absorptivity function /
- monitoring of CO concentration
[1] Zellweger C, Steinbrecher R, Laurent O, Lee H, Kim S, Emmenegger L, Steinbacher M, Buchmann B 2019 Atmos. Meas. Tech. 12 5863Google Scholar
[2] Chen H, Karion A, Rella C W, Winderlich J, Gerbig C, Filges A, Newberger T, Sweeney C, Tans P P 2013 Atmos. Meas. Tech. 6 1031Google Scholar
[3] van der Laan S, Neubert R E M, Meijer H A J 2009 Atmos. Meas. Tech. 2 549Google Scholar
[4] Hammer S, Griffith D W T, Konrad G, Vardag S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar
[5] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar
[6] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energy Combust. 60 132
[7] Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar
[8] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[9] Pal M, Maity A, Pradhan M 2018 Laser Phys. 28 105702Google Scholar
[10] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[11] Zhou S, Liu N W, Shen C Y, Zhang L, He T B, Yu B L, Li J S 2019 Spectrochim. Acta A 2019 223 117332
[12] Tang Y Y, Liu W Q, Kan R F, Liu J G, He Y B, Zhang Y J, Xu Z Y, Ruan J, Geng H 2011 Opt. Express 19 20224Google Scholar
[13] Kasyutich1 V L, Holdsworth R J, Martin P A 2008 Appl. Phys. B 92 271Google Scholar
[14] Stefan´ski P, Lewicki R, Sanchez N P, Tarka J, Griffin R J, Razeghi M, Tittel F K 2014 Appl. Phys. B 117 519Google Scholar
[15] Qiao S D, Ma Y F, He Y, Patimisco P, Sampaolo A, Spagnolo V 2021 Opt. Express 29 25100Google Scholar
[16] Dang J M, Yu H Y, Sun Y J, Wang Y D 2017 Infrared Phys. Technol. 82 183Google Scholar
[17] Li J S, Parchatka U, Fischer H 2013 Sens. Actuators, B 182 659Google Scholar
[18] Wei M, Ye Q H, Kan R F, Chen B, Yang C G, Xu Z Y, Chen X, Ruan J, Fan X L, Wang W, Hu M, Liu J G 2016 Chin. Phys. B 25 094210Google Scholar
[19] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar
[20] Silva M L, Wainner R T, Sonnenfroh D M, Rosen D I, Allen M G, Risby T H 2005 Proc. SPIE, November 17, 2005 p6010
[21] Hangauer A, Chen J, Strzoda R, Ortsiefer M, Amann M C 2008 Opt. Lett. 33 1566Google Scholar
[22] Hangauer A, Chen J, Strzoda R, Fleischer M, Amann M C 2013 Opt. Express 22 13680
[23] Ortsiefer M, Neumeyr C, Rosskopf J, Arafin S, Böhm G, Hangauer A, Chen J, Strzoda R, M.-C. Amann M C 2011 Proc. SPIE 7945 794509Google Scholar
[24] Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Opt. 17 055401Google Scholar
[25] Lou D C, Rao W, Wang K, Song J L, Jiang Y J 2020 Global Intelligent Industry Conference 2020 Proc. SPIE March 18, 2021, p117801P
[26] 陈兵, 周泽义, 康鹏, 刘安雯, 胡水明 2015 光谱学与光谱分析 35 971Google Scholar
Chen B, Zhou Z Y, Kang P, Liu A W, Hu S M 2015 Spectrosc. Spect. Anal. 35 971Google Scholar
[27] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[28] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[29] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Physics Letters 14 115701
[30] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[31] Li J D, Du Y J, Ding Y J, Peng Z M 2020 J. Quant. Spectrosc. Radiat. Transfer 254 107216Google Scholar
[32] Li J D, Du Y J, Ding Y J, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 272 107790Google Scholar
[33] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[34] Boyer W, Lynas-Gray A E 2014 MNRAS 444 2555Google Scholar
[35] Allan D W 1966 Proc. IEEE 54 221Google Scholar
[36] Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar
[37] 王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064204Google Scholar
Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064204Google Scholar
[38] 王振, 杜艳君, 丁艳军, 彭志敏 2019 物理学报 68 204204Google Scholar
Wang Z, Du Y J, Ding Y J, Peng Z M 2019 Acta Phys. Sin. 68 204204Google Scholar
[39] Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar
-
图 1 实验系统WM-DAS (a)与CRDS (b). ISO, 光纤隔离器; AOM, 声光调制器; APD, 雪崩光电二极管; PD, 光电二极管; DDG, 数字延迟发生器; DAQ, 数据采集卡
Fig. 1. System schematic diagram of WM-DAS (a) and CRDS (b). ISO, fiber isolator; AOM, acousto-optic modulator; APD, avalanche photodiode; PD, photodiode; DDG, digital delay generator; DAQ, digital acquisition.
图 5 (a) WM-DAS测量的CO(4300.7 cm–1)吸收系数函数, 采集103周期, 总用时1 s; (b) CRDS测量的CO(6383.09 cm–1、线强度约为4300.7 cm–1的0.77 %)吸收系数函数, 平均103次, 总用时4 h
Fig. 5. (a) CO (4300.7 cm–1) absorption coefficient function measured by WM-DAS, 103 cycles of collection, and the total time is ~1 second; (b) absorption coefficient function of CO (6383.09 cm–1, the line strength is about 0.77% of 4300.7 cm–1) measured by CRDS, with an average of 103 times, with a total time of 4 hours.
图 7 不同浓度配比下, WM-DAS(红色)和CRDS(蓝色)连续测量结果 (a) 低浓度(1.3 × 10–6—9.6 × 10–6); (b) 极低浓度(0.44 × 10–6—1.33 × 10–6)
Fig. 7. Continuous measurement results of WM-DAS (red) and CRDS (blue) under different concentration ratios: (a) Low concentration (1.3 × 10–6–19.6 × 10–6) (b) extremely low concentration (0.44 × 10–6–11.33 × 10–6).
-
[1] Zellweger C, Steinbrecher R, Laurent O, Lee H, Kim S, Emmenegger L, Steinbacher M, Buchmann B 2019 Atmos. Meas. Tech. 12 5863Google Scholar
[2] Chen H, Karion A, Rella C W, Winderlich J, Gerbig C, Filges A, Newberger T, Sweeney C, Tans P P 2013 Atmos. Meas. Tech. 6 1031Google Scholar
[3] van der Laan S, Neubert R E M, Meijer H A J 2009 Atmos. Meas. Tech. 2 549Google Scholar
[4] Hammer S, Griffith D W T, Konrad G, Vardag S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153Google Scholar
[5] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar
[6] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energy Combust. 60 132
[7] Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar
[8] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[9] Pal M, Maity A, Pradhan M 2018 Laser Phys. 28 105702Google Scholar
[10] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[11] Zhou S, Liu N W, Shen C Y, Zhang L, He T B, Yu B L, Li J S 2019 Spectrochim. Acta A 2019 223 117332
[12] Tang Y Y, Liu W Q, Kan R F, Liu J G, He Y B, Zhang Y J, Xu Z Y, Ruan J, Geng H 2011 Opt. Express 19 20224Google Scholar
[13] Kasyutich1 V L, Holdsworth R J, Martin P A 2008 Appl. Phys. B 92 271Google Scholar
[14] Stefan´ski P, Lewicki R, Sanchez N P, Tarka J, Griffin R J, Razeghi M, Tittel F K 2014 Appl. Phys. B 117 519Google Scholar
[15] Qiao S D, Ma Y F, He Y, Patimisco P, Sampaolo A, Spagnolo V 2021 Opt. Express 29 25100Google Scholar
[16] Dang J M, Yu H Y, Sun Y J, Wang Y D 2017 Infrared Phys. Technol. 82 183Google Scholar
[17] Li J S, Parchatka U, Fischer H 2013 Sens. Actuators, B 182 659Google Scholar
[18] Wei M, Ye Q H, Kan R F, Chen B, Yang C G, Xu Z Y, Chen X, Ruan J, Fan X L, Wang W, Hu M, Liu J G 2016 Chin. Phys. B 25 094210Google Scholar
[19] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar
[20] Silva M L, Wainner R T, Sonnenfroh D M, Rosen D I, Allen M G, Risby T H 2005 Proc. SPIE, November 17, 2005 p6010
[21] Hangauer A, Chen J, Strzoda R, Ortsiefer M, Amann M C 2008 Opt. Lett. 33 1566Google Scholar
[22] Hangauer A, Chen J, Strzoda R, Fleischer M, Amann M C 2013 Opt. Express 22 13680
[23] Ortsiefer M, Neumeyr C, Rosskopf J, Arafin S, Böhm G, Hangauer A, Chen J, Strzoda R, M.-C. Amann M C 2011 Proc. SPIE 7945 794509Google Scholar
[24] Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Opt. 17 055401Google Scholar
[25] Lou D C, Rao W, Wang K, Song J L, Jiang Y J 2020 Global Intelligent Industry Conference 2020 Proc. SPIE March 18, 2021, p117801P
[26] 陈兵, 周泽义, 康鹏, 刘安雯, 胡水明 2015 光谱学与光谱分析 35 971Google Scholar
Chen B, Zhou Z Y, Kang P, Liu A W, Hu S M 2015 Spectrosc. Spect. Anal. 35 971Google Scholar
[27] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[28] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[29] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Physics Letters 14 115701
[30] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[31] Li J D, Du Y J, Ding Y J, Peng Z M 2020 J. Quant. Spectrosc. Radiat. Transfer 254 107216Google Scholar
[32] Li J D, Du Y J, Ding Y J, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 272 107790Google Scholar
[33] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[34] Boyer W, Lynas-Gray A E 2014 MNRAS 444 2555Google Scholar
[35] Allan D W 1966 Proc. IEEE 54 221Google Scholar
[36] Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar
[37] 王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064204Google Scholar
Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064204Google Scholar
[38] 王振, 杜艳君, 丁艳军, 彭志敏 2019 物理学报 68 204204Google Scholar
Wang Z, Du Y J, Ding Y J, Peng Z M 2019 Acta Phys. Sin. 68 204204Google Scholar
[39] Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar
计量
- 文章访问数: 6746
- PDF下载量: 162
- 被引次数: 0