搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定

王振 杜艳君 丁艳军 彭志敏

引用本文:
Citation:

基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定

王振, 杜艳君, 丁艳军, 彭志敏

High precision calibration of spectral parameters of CO at 1567 nm based on wavelength modulation-direct absorption spectroscopy

Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min
PDF
HTML
导出引用
  • 直接吸收光谱(DAS)可直接测量分子吸收率函数, 并通过拟合吸收率函数确定待测气体参数. 波长调制-直接吸收光谱(WM-DAS)在DAS基础上, 结合了波长调制光谱(WMS)中谐波分析思想, 利用傅里叶变换复现吸收率函数, 可有效提高吸收率函数的测量精度. 本文利用WM-DAS方法结合长光程气体吸收池, 在室温低压条件下, 对CO分子1567 nm处R5—R11近红外弱吸收谱线吸收率函数进行了精确复现, 其拟合残差标准差低至3 × 10–5, 随后根据测得的吸收率函数对谱线的碰撞展宽、Dicke收敛以及速度依赖的碰撞展宽系数等光谱参数进行了高精度标定, 并将其与高灵敏度的连续波腔衰荡光谱(CW-CRDS)测量结果进行了比较, 实验结果表明该方法与CW-CRDS测量结果具有高度一致性, 更具有系统简单、测量速度快、对环境要求低等优点.
    Direct absorption spectrum (DAS) can be used to measure the molecular absorptivity function and determine the spectral parameters of the gas by fitting the measured absorptivity function. Wavelength modulation-direct absorption spectroscopy (WM-DAS) is based on DAS and combines with the idea of harmonic analysis in wavelength modulation spectrum (WMS). The measurement accuracy of absorptivity function can be effectively improved by using Fourier transform. In this paper, the absorptivity function of CO R5–R11 near infrared weak absorption line at 1567 nm is accurately reproduced by using the WM-DAS method combined with long optical path gas absorption cell at room temperature and low pressure. The standard deviation of the fitting residual reaches 3 × 10–5, and then the spectral parameters such as collision broadening, Dicke narrowing and speed-dependent collision broadening coefficients are measured in high precision. These parameters are compared with the results from the high sensitivity continuous wave cavity ring down spectroscopy (CW-CRDS). The experimental results show that the signal-to-noise ratio of the absorptivity function measured by CW-CRDS is about 2.5 times that of the long-path WM-DAS, and the measured spectral parameters are highly consistent. The relative errors of the collision broadening coefficients obtained by using the Voigt profiles of the two methods are less than 1%. At the same time, the detection limit of CO at 1567 nm based on the WM-DAS method is about 80 ppb, and the corresponding absorption coefficient is 2 × 10–10 cm–1, which is slightly higher than that from the CW-CRDS method. However, the WM-DAS method has the advantages of fast measurement speed, simple system and low cost, and is expected to provide a new method of measuring the weak absorption lines.
      通信作者: 彭志敏, apspect@tsinghua.edu.cn
    • 基金项目: 国家级-国家重点研发项目(2016YFC0201104)
      Corresponding author: Peng Zhi-Min, apspect@tsinghua.edu.cn
    [1]

    Devi V M, Benner D C, Smith M A H, Mantz A W, Sung K, Brown L R, Predoi-Cross A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1013Google Scholar

    [2]

    Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113Google Scholar

    [3]

    Brandstetter M, Genner A, Schwarzer C, Mujagic E, Strasser G, Lendl B 2014 Opt. Express 22 2656Google Scholar

    [4]

    Meek A S, Poisson A, Guelachvili G, Hansch W T, Picqué N 2014 Appl. Phys. B 114 573Google Scholar

    [5]

    Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132Google Scholar

    [7]

    Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar

    [8]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [9]

    McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S C, Jervis D, Agnese M, McGovern R, Yacovitch T I, Roscioli J R 2015 Appl. Phys. B 119 203Google Scholar

    [10]

    He D, Peng Z M, Ding Y J 2019 Combust. Flame 207 222Google Scholar

    [11]

    Pogány A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar

    [12]

    Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar

    [13]

    Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar

    [14]

    Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar

    [15]

    Dahlen D, Wilcox R, Leemans W 2017 Appl. Opt. 52 267Google Scholar

    [16]

    Tarsitano C G, Webster C R 2007 Appl. Opt. 46 6923Google Scholar

    [17]

    McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S, Wood E 2010 Opt. Eng. 49 111124Google Scholar

    [18]

    Regalia L, Oudot C, Thomas X, Von der Heyden P, Decatoire D 2010 J. Quant. Spectrosc. Radiat. Transfer 111 826Google Scholar

    [19]

    Nahar N K, Rojas R G 2009 Appl. Opt. 48 3921Google Scholar

    [20]

    Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar

    [21]

    Zhao W, Gao X, Chen W, Zhang W, Huang T, Wu T, Cha H 2007 Appl. Phys. B 86 353Google Scholar

    [22]

    Zheng K Y, Zheng C T, He Q X, Yao D, Hu L, Zhang Y, Wang Y D, Tittel F K 2018 Opt. Express 26 26205Google Scholar

    [23]

    李志彬, 马洪亮, 曹政松, 孙明国, 黄印博, 朱文越, 刘强 2016 物理学报 65 053301Google Scholar

    Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301Google Scholar

    [24]

    Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar

    [25]

    Morville J, Romanini D, Kachanov A A, Chenevier M 2004 Appl. Phys. B 78 465Google Scholar

    [26]

    Long D A, Fleisher A J, Liu Q, Hodges J T 2016 Opt. Lett. 41 1612Google Scholar

    [27]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [28]

    Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar

    [29]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [30]

    Du Y J, Peng Z M, Ding Y J 2020 Opt. Express 28 3482Google Scholar

    [31]

    Kassi S, Karlovets E V, Tashkun S A, Perevalov V I, Campargue A 2017 J. Quant. Spectrosc. Radiat. Transfer 187 414Google Scholar

    [32]

    Goldenstein C S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar

    [33]

    Schreier F 2017 J. Quant. Spectrosc. Radiat. Transfer 187 44Google Scholar

    [34]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 29550Google Scholar

    [35]

    Kowzan G, Stec K, Zaborowski M, Wójtewicz S, Cygan A, Lisak D, Masłowski P, Trawiński R S 2017 J. Quant. Spectrosc. Radiat. Transfer 191 46Google Scholar

    [36]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [37]

    Allan D W 1966 Proc. IEEE 54 221Google Scholar

    [38]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radiat. Transfer 154 35Google Scholar

  • 图 1  WM-DAS与CW-CRDS的系统原理图(LC, 激光电流和温度控制器; FI, 光纤隔离器; AOM, 声光调制器; APD, 雪崩光电二极管; PD, 光电二极管; DDG, 数字延迟发生器; PZT, 压电换能器; WM, 波长计)

    Fig. 1.  System schematic diagram of WM-DAS and CW-CRDS. LC, laser current and temperature controller; FI, fiber isolator; AOM, acousto-optic modulator; APD, avalanche photodiode; PD, photodiode; DDG, digital delay generator; PZT, piezoelectric transducer; WM, wavelength meter.

    图 2  测量的100个正弦波周期的激光光强及激光相对波长标定结果(FSR为自由光谱范围), 以及蕴含气体吸收率函数信息的透射光强傅里叶变换(FFT)系数

    Fig. 2.  Measured transmitted intensities of 100 periods of sinusoidal waves and fitted frequency (FSR, free spectral range), and fast Fourier transform (FFT) coefficients Ak and Bk of transmitted light intensity.

    图 3  测量的CO光谱及其最佳Voigt和Rautian线型拟合结果(XCO, c, τσSD分别为CO浓度、光速、衰荡时间和残差的标准差) (a) WM-DAS; (b) CW-CRDS

    Fig. 3.  Measured absorption function of CO and the best fits of Voigt and Rautian profile (XCO, c, τ, and σSD represent the CO concentration, light velocity, ring down time and standard deviation of the residual, respectively): (a) WM-DAS; (b) CW-CRDS.

    图 4  不同压力下测得的光谱参数(WM-DAS为红色, CW-CRDS为黑色) (a) γc (圆); (b) β (正方形), γ2 (三角)

    Fig. 4.  Measured spectral parameters for various pressures (WM-DAS (red), CW-CRDS (black)): (a) γc (dot); (b) β (square), γ2 (triangle).

    图 5  两种方法测量的Allan方差

    Fig. 5.  Allan variance measured by the two methods.

    表 1  WM-DAS和CW-CRDS测量的光谱参数及其不确定度

    Table 1.  Measured spectroscopic parameters and uncertainties.

    v0/cm–1TransitionE′′/cm–1ϕγ0(T0)/10–2 cm–1·atm–1β0(T0)/10–2 cm–1·atm–1γ2(T0)/10–2 cm–1·atm–1
    CRDSWMHTCRDSWMCRDSWM
    6371.299R557.670VP6.26b6.23b6.29a
    GP6.43b6.48b2.84c2.90d
    RP6.47b6.50b2.57c2.67d
    SDVP6.50b6.55b0.87c0.77d
    6374.406R680.735VP6.10b6.08b6.12a
    GP6.20b6.30b2.65c2.71d
    RP6.25b6.30b2.38c2.46d
    SDVP6.26b6.36b0.69c0.73d
    6377.407R7107.642VP5.97b5.94b5.99a
    GP6.07b6.12b2.22c2.48d
    RP6.10b6.17b2.06c2.36d
    SDVP6.25b6.24b0.71c0.71d
    6380.301R8138.390VP5.89b5.88b5.89a
    GP6.04b6.02b2.20c2.27d
    RP6.06b6.09b2.14c2.14d
    SDVP6.11b6.15b0.70c0.64d
    6383.090R9172.978VP5.80b5.78b5.80a
    GP5.91b6.03b2.08c2.11d
    RP5.94b6.03b1.89c1.85d
    SDVP5.97b6.09b0.61c0.63d
    6385.771R10211.404VP5.72b5.68b5.73a
    GP5.91b5.89b2.27c2.29d
    RP5.92b5.91b1.98c1.86d
    SDVP5.98b5.96b0.62c0.65d
    6388.347R11253.667VP5.62b5.58b5.67a
    GP5.91b5.80b 2.62c2.21d
    RP5.93b5.82b2.15c2.00d
    SDVP5.95b5.89b0.77c0.67d
    注: WM代表WM-DAS, HT表示HITRAN[36];a表示相同温度(T0 = 288 K)下HITRAN的数据, 空气为背景气;b不确定度 0—1%;c不确定度 5%—15%;d不确定度 10%—20%.
    下载: 导出CSV
  • [1]

    Devi V M, Benner D C, Smith M A H, Mantz A W, Sung K, Brown L R, Predoi-Cross A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1013Google Scholar

    [2]

    Campargue A, Karlovets E V, Kassi S 2015 J. Quant. Spectrosc. Radiat. Transfer 154 113Google Scholar

    [3]

    Brandstetter M, Genner A, Schwarzer C, Mujagic E, Strasser G, Lendl B 2014 Opt. Express 22 2656Google Scholar

    [4]

    Meek A S, Poisson A, Guelachvili G, Hansch W T, Picqué N 2014 Appl. Phys. B 114 573Google Scholar

    [5]

    Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132Google Scholar

    [7]

    Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar

    [8]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [9]

    McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S C, Jervis D, Agnese M, McGovern R, Yacovitch T I, Roscioli J R 2015 Appl. Phys. B 119 203Google Scholar

    [10]

    He D, Peng Z M, Ding Y J 2019 Combust. Flame 207 222Google Scholar

    [11]

    Pogány A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar

    [12]

    Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar

    [13]

    Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar

    [14]

    Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar

    [15]

    Dahlen D, Wilcox R, Leemans W 2017 Appl. Opt. 52 267Google Scholar

    [16]

    Tarsitano C G, Webster C R 2007 Appl. Opt. 46 6923Google Scholar

    [17]

    McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S, Wood E 2010 Opt. Eng. 49 111124Google Scholar

    [18]

    Regalia L, Oudot C, Thomas X, Von der Heyden P, Decatoire D 2010 J. Quant. Spectrosc. Radiat. Transfer 111 826Google Scholar

    [19]

    Nahar N K, Rojas R G 2009 Appl. Opt. 48 3921Google Scholar

    [20]

    Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar

    [21]

    Zhao W, Gao X, Chen W, Zhang W, Huang T, Wu T, Cha H 2007 Appl. Phys. B 86 353Google Scholar

    [22]

    Zheng K Y, Zheng C T, He Q X, Yao D, Hu L, Zhang Y, Wang Y D, Tittel F K 2018 Opt. Express 26 26205Google Scholar

    [23]

    李志彬, 马洪亮, 曹政松, 孙明国, 黄印博, 朱文越, 刘强 2016 物理学报 65 053301Google Scholar

    Li Z B, Ma H L, Cao Z S, Sun M G, Huang Y B, Zhu W Y, Liu Q 2016 Acta Phys. Sin. 65 053301Google Scholar

    [24]

    Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar

    [25]

    Morville J, Romanini D, Kachanov A A, Chenevier M 2004 Appl. Phys. B 78 465Google Scholar

    [26]

    Long D A, Fleisher A J, Liu Q, Hodges J T 2016 Opt. Lett. 41 1612Google Scholar

    [27]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [28]

    Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar

    [29]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [30]

    Du Y J, Peng Z M, Ding Y J 2020 Opt. Express 28 3482Google Scholar

    [31]

    Kassi S, Karlovets E V, Tashkun S A, Perevalov V I, Campargue A 2017 J. Quant. Spectrosc. Radiat. Transfer 187 414Google Scholar

    [32]

    Goldenstein C S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar

    [33]

    Schreier F 2017 J. Quant. Spectrosc. Radiat. Transfer 187 44Google Scholar

    [34]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 29550Google Scholar

    [35]

    Kowzan G, Stec K, Zaborowski M, Wójtewicz S, Cygan A, Lisak D, Masłowski P, Trawiński R S 2017 J. Quant. Spectrosc. Radiat. Transfer 191 46Google Scholar

    [36]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [37]

    Allan D W 1966 Proc. IEEE 54 221Google Scholar

    [38]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radiat. Transfer 154 35Google Scholar

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [3] 田思迪, 杜艳君, 李济东, 丁艳军, 彭志敏, 吕俊复, 潘超, 冯小雅. H2S分子6320—6350 cm–1波段谱线参数高精度测量. 物理学报, 2023, 72(2): 024205. doi: 10.7498/aps.72.20221855
    [4] 黄知秋, 张猛, 彭志敏, 王振, 杨乾锁. 注入光有限相干性对衰荡腔测试方法的影响及求解衰荡时间的强度积分法. 物理学报, 2023, 72(18): 184205. doi: 10.7498/aps.72.20230448
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [6] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [7] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响. 物理学报, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [8] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量. 物理学报, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [9] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2022, 71(4): 044205. doi: 10.7498/aps.71.20211772
    [10] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211772
    [11] 王振, 杜艳君, 丁艳军, 彭志敏. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度. 物理学报, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [12] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法. 物理学报, 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [13] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [14] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [15] 赵静, 余辉龙, 刘伟伟, 郭婧. 砷化镓光电阴极光谱响应与吸收率关系分析. 物理学报, 2017, 66(22): 227801. doi: 10.7498/aps.66.227801
    [16] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [17] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量. 物理学报, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [18] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [19] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [20] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
计量
  • 文章访问数:  10923
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2019-12-19
  • 刊出日期:  2020-03-20

/

返回文章
返回