搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量

王振 杜艳君 丁艳军 吕俊复 彭志敏

引用本文:
Citation:

基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量

王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏

Wide-range and calibration-free H2S volume fraction measurement based on combination of wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy

Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Lü Jun-Fu, Peng Zhi-Min
PDF
HTML
导出引用
  • 结合腔衰荡光谱(CRDS)与波长调制-直接吸收光谱(WM-DAS), 建立了一种宽量程、免标定的气体体积分数的检测方法, 具有CRDS高信噪比及WM-DAS快速和可测量绝对体积分数的优点. 基线衰荡时间(τ0)可通过测量谱线中心频率处吸收率(WM-DAS)和衰荡时间(CRDS)计算得到, 无需实时校准, 极大提升了CRDS测量速度. 室温常压下, 在6336.617 cm–1处不同体积分数的H2S测量结果表明, 该方法动态测量范围可扩展到4个数量级以上, 测量精度相比WM-DAS得到了提高, 且检测限可在40 s内达到1 × 10–9.
    Combining cavity ring down spectroscopy (CRDS) and wavelength modulated direct absorption spectroscopy (WM-DAS), a wide range and calibration-free gas concentration detection method is established, which has the advantages of high signal-to-noise ratio of CRDS and fast speed and measurable absolute concentration of WM-DAS. The baseline ring down time (τ0) can be calculated by measuring the absorptivity (WM-DAS) and ring down time (CRDS) at the central frequency of the spectral line, without real-time calibration, which greatly improves the speed of CRDS measurement. The measurement results of different H2S concentrations at 6336.617 cm–1 at room temperature and atmospheric pressure show that the dynamic measurement range of this method can be extended to more than 4 orders of magnitude, the measurement accuracy is improved in comparison with WM-DAS, and the detection limit can reach 1 × 10–9 in 40 s.
      通信作者: 彭志敏, apspect@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB2006002)和华能集团总部科技项目(批准号: HNKJ20-H50)资助的课题.
      Corresponding author: Peng Zhi-Min, apspect@tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2006002) and the Huaneng Group Science and Technology Research Project, China (Grant No. HNKJ20-H50).
    [1]

    Li R, C Warneke, Graus M, Field R, Geiger F, Veres P R, Soltis J, Li S M, Murphy S M, Sweeney C, Pétron G, Roberts J M, de Gouw J 2014 Atmos. Meas. Tech. 7 3597Google Scholar

    [2]

    Saha C K, Feilberg A, Zhang G Q, Adamsen A P S 2011 Sci. Total Environ. 410–411 161

    [3]

    Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar

    [4]

    Guo Y C, Qiu X B, Li N, Feng S L, Cheng T, Liu Q Q, He Q S, Kan R F, Yang H N, Li C L 2020 Infrared Phys. Technol. 105 103153Google Scholar

    [5]

    Liu D, Feilberg A, Adamsen A P S, Jonassen K E N 2011 Atmos. Environ. 45 3786Google Scholar

    [6]

    Pal M, Maithani S, Maity A, Pradhan M 2019 J. Anal. At. Spectrom. 34 860Google Scholar

    [7]

    Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar

    [8]

    Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar

    [9]

    Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar

    [10]

    Wang Z, Peng Z M, Ding Y J, Du Y J 2020 J. Opt. Soc. Am. B 37 1144Google Scholar

    [11]

    Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [12]

    McHale L E, Martinez B, Miller T W, Yalin A P 2019 Opt. Express 27 20084Google Scholar

    [13]

    Mao L J, Cai M J, Liu Q Y, Wang G R, Wang X Y 2019 Energy Sci. Eng. 7 2596Google Scholar

    [14]

    Ko J H, Xu Q Y, Jang Y C 2015 Crit. Rev. Env. Sci. Technol. 5 2043

    [15]

    Thorsteinsson T, Hackenbruch J, Sveinbjörnsson E, Jóhannsson T 2013 Geothermics 45 31Google Scholar

    [16]

    Taira K, Sugiyama T, Einaga H, Nakao K, Suzuki K 2020 J. Catal. 389 611Google Scholar

    [17]

    Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar

    [18]

    Pal M, Maity A, Pradhan, M 2018 Laser Phys. 28 105702Google Scholar

    [19]

    Klein A, Witzel O, Ebert V 2014 Sensors 14 21497Google Scholar

    [20]

    Li Z Y, Hua R Z, Xie P H, Wang H C, Lu K D, Wang D 2018 Sci. Total Environ. 614 131

    [21]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [22]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [23]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [24]

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar

    [25]

    Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar

    [26]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [27]

    McManus J B, Zahniser M S, Nelson, D D 2011 Appl. Opt. 50 A74Google Scholar

    [28]

    罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101Google Scholar

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101Google Scholar

    [29]

    Allan D W 1966 Proc. IEEE 54 221Google Scholar

  • 图 1  实验系统 (a) WM-DAS与 (b) CRDS. ISO, 光纤隔离器; AOM, 声光调制器; APD, 雪崩光电二极管; PD, 光电二极管; DDG, 数字延迟发生器; DAQ, 数据采集卡

    Fig. 1.  System schematic diagram of the (a) WM-DAS and (b) CRDS. ISO, fiber isolator; AOM, acousto-optic modulator; APD, avalanche photodiode; PD, photodiode; DDG, digital delay generator; DAQ, digital acquisition.

    图 2  室温常压下, 6336.617 cm–1处测量的有吸收(H2S体积分数为10–4)和无吸收的衰荡时间

    Fig. 2.  Ring down time with and without absorption measured at 6336.617 cm–1 at room temperature and pressure. The volume fraction of H2S is 10–4.

    图 3  (a) WM-DAS波长标定; (b) 测量光强It的傅里叶系数

    Fig. 3.  (a) Wavelength calibration of WM-DAS; (b) Fourier coefficients of the measuring light intensity It.

    图 4  中心频率ν0处的衰荡信号、透射光信号、吸收系数和H2S体积分数之间的关系

    Fig. 4.  Relationships between ring down signals at ν0, emergent light signals, absorption coefficient and volume fraction of H2S.

    图 5  室温常压下两种方法测量的不同体积分数的H2S光谱及其拟合结果 (a) CRDS, 体积分数为1 × 10–7; (b) WM-DAS, 体积分数为1.912 × 10–3

    Fig. 5.  H2S spectra of different volume fraction measured by two methods at room temperature and pressure and their fitting results: (a) CRDS (the volume fraction is 1 × 10–7); (b) WM-DAS (the volume fraction is 1.912 × 10–3).

    图 6  室温常压下, 在量程交集区域采用两种方法分别测量的不同体积分数(2 × 10–5—9.5 × 10–5) H2S吸收光谱及其最佳拟合结果 (a) CRDS, 去除了吸收系数基线以便比较; (b) WM-DAS

    Fig. 6.  At room temperature and pressure, the absorption spectra of H2S with different volume fraction (2 × 10–5–9.5 × 10–5) measured by two methods in the intersection area and their best fitting results: (a) CRDS, the baseline of the absorption coefficient measured by CRDS is removed for comparison; (b) WM-DAS.

    图 7  (a) 在量程交叉区域, 采用两种方法分别测量的ν0处吸收率和衰荡时间; (b) 利用量程交集区域标定τ0

    Fig. 7.  (a) In the intersection area, the absorptivity and the ring down time at ν0 measured by the two methods; (b) calibrate τ0 using the intersection area.

    图 8  (a) 基于WM-DAS和CRDS方法, 并利用计算的τ0实现1.2 × 10–7—1.912 × 10–3的H2S体积分数连续测量及其直方图; (b) 配置浓度与实测体积分数的关系及其最佳线性拟合, 以及拟合绝对残差(Res)和相对残差(RE)

    Fig. 8.  (a) Based on WM-DAS and CRDS, continuous measurement of volume fraction of H2S in a range of 1.2 × 10–7–1.912 × 10–3 by using calculated τ0 and the corresponding histogram analysis; (b) relationship between configuration concentration and measured volume fraction and its best linear fitting, as well as the fitting residual and the relative residual.

    图 9  WM-DAS和CRDS两种方法测量的H2S吸收系数及其Allan标准差

    Fig. 9.  The H2S absorption coefficient measured by WM-DAS and CRDS and its Allan standard deviation.

  • [1]

    Li R, C Warneke, Graus M, Field R, Geiger F, Veres P R, Soltis J, Li S M, Murphy S M, Sweeney C, Pétron G, Roberts J M, de Gouw J 2014 Atmos. Meas. Tech. 7 3597Google Scholar

    [2]

    Saha C K, Feilberg A, Zhang G Q, Adamsen A P S 2011 Sci. Total Environ. 410–411 161

    [3]

    Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar

    [4]

    Guo Y C, Qiu X B, Li N, Feng S L, Cheng T, Liu Q Q, He Q S, Kan R F, Yang H N, Li C L 2020 Infrared Phys. Technol. 105 103153Google Scholar

    [5]

    Liu D, Feilberg A, Adamsen A P S, Jonassen K E N 2011 Atmos. Environ. 45 3786Google Scholar

    [6]

    Pal M, Maithani S, Maity A, Pradhan M 2019 J. Anal. At. Spectrom. 34 860Google Scholar

    [7]

    Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar

    [8]

    Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar

    [9]

    Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar

    [10]

    Wang Z, Peng Z M, Ding Y J, Du Y J 2020 J. Opt. Soc. Am. B 37 1144Google Scholar

    [11]

    Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar

    [12]

    McHale L E, Martinez B, Miller T W, Yalin A P 2019 Opt. Express 27 20084Google Scholar

    [13]

    Mao L J, Cai M J, Liu Q Y, Wang G R, Wang X Y 2019 Energy Sci. Eng. 7 2596Google Scholar

    [14]

    Ko J H, Xu Q Y, Jang Y C 2015 Crit. Rev. Env. Sci. Technol. 5 2043

    [15]

    Thorsteinsson T, Hackenbruch J, Sveinbjörnsson E, Jóhannsson T 2013 Geothermics 45 31Google Scholar

    [16]

    Taira K, Sugiyama T, Einaga H, Nakao K, Suzuki K 2020 J. Catal. 389 611Google Scholar

    [17]

    Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar

    [18]

    Pal M, Maity A, Pradhan, M 2018 Laser Phys. 28 105702Google Scholar

    [19]

    Klein A, Witzel O, Ebert V 2014 Sensors 14 21497Google Scholar

    [20]

    Li Z Y, Hua R Z, Xie P H, Wang H C, Lu K D, Wang D 2018 Sci. Total Environ. 614 131

    [21]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [22]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar

    [23]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [24]

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar

    [25]

    Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar

    [26]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [27]

    McManus J B, Zahniser M S, Nelson, D D 2011 Appl. Opt. 50 A74Google Scholar

    [28]

    罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101Google Scholar

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101Google Scholar

    [29]

    Allan D W 1966 Proc. IEEE 54 221Google Scholar

  • [1] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [2] 田思迪, 杜艳君, 李济东, 丁艳军, 彭志敏, 吕俊复, 潘超, 冯小雅. H2S分子6320—6350 cm–1波段谱线参数高精度测量. 物理学报, 2023, 72(2): 024205. doi: 10.7498/aps.72.20221855
    [3] 黄知秋, 张猛, 彭志敏, 王振, 杨乾锁. 注入光有限相干性对衰荡腔测试方法的影响及求解衰荡时间的强度积分法. 物理学报, 2023, 72(18): 184205. doi: 10.7498/aps.72.20230448
    [4] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 更正: 光学反馈线性腔衰荡光谱技术不确定性[物理学报 2022, 71(12): 124201]. 物理学报, 2022, 71(15): 159901. doi: 10.7498/aps.71.159901
    [5] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [7] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [8] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响. 物理学报, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [9] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2022, 71(4): 044205. doi: 10.7498/aps.71.20211772
    [10] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211772
    [11] 王振, 杜艳君, 丁艳军, 彭志敏. 基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定. 物理学报, 2020, 69(6): 064204. doi: 10.7498/aps.69.20191865
    [12] 王振, 杜艳君, 丁艳军, 彭志敏. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度. 物理学报, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [13] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法. 物理学报, 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [14] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [15] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [16] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [17] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [18] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [19] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [20] 赵宏太, 柳晓军, 曹俊文, 彭良友, 詹明生. Ba原子6s6p1P1←6s6s1S0跃迁的光腔衰荡光谱. 物理学报, 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
计量
  • 文章访问数:  3628
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-19
  • 上网日期:  2022-09-02
  • 刊出日期:  2022-09-20

/

返回文章
返回