搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光强与吸收率非线性同步拟合的吸收光谱测量方法

李宁 吕晓静 翁春生

引用本文:
Citation:

基于光强与吸收率非线性同步拟合的吸收光谱测量方法

李宁, 吕晓静, 翁春生

Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm

Li Ning, Lü Xiao-Jing, Jing Weng
PDF
导出引用
  • 针对高压环境吸收谱线加宽以及波分复用技术合波透射信号分析测试难题,提出利用非线性拟合方法对激光吸收光谱测量中激光强度与吸收光谱进行耦合求解.建立激光强度非线性变化与多谱线吸收拟合函数关系,解决了特殊环境下无法获取光谱基线的难题,实现了波分复用过程合波后光谱信号的分离与诊断.通过仿真验证该方法的可行性,分析计算了激光器特性和特征谱线位置等因素对拟合结果的影响.搭建实验台实现了1–10 atm变压力环境下6330–6337 cm-1波段CO2吸收光谱叠加信号的诊断分析.对气液两相脉冲爆轰过程中7185.6 cm-1与7444.35 cm-1波段波分复用光谱信号进行测试与拟合,无需分光设备实现了耦合光路分离和温度计算.研究结果对激光吸收光谱技术在高压环境以及燃烧环境下波分复用技术的发展具有重要意义.
    A novel approach to using tunable diode laser absorption spectroscopy (TDLAS) is developed for measuring the laser intensity and absorbance of gas with highly broadened and congested spectra by wavelength division multiplex (WDM) technology. Direct absorption spectroscopy with non-linear algorithm is utilized, because this fitting method offers benefits in dealing with blended spectral features according to the relationship between transmitted laser intensity and absorbance by Beer law. Compared with traditional TDLAS sensing with WDM, this approach has some advantages of transmissions demultiplexing without additional optic gratings and detectors. Following the published theory, the absorbance and transmitted laser intensity are incorporated into an improved non-linear fitting model. A solution to a simulation of CO2 blended spectrum at a pressure of 5 atm is exploited to demonstrate the ability to recover the absorption in a high pressure environment, inferring the optimal combination of parameters in the model. The influences of these nonideal laser effects, such as nonlinear and linear coefficients, are investigated by the multiplexed transmission simulations at rovibrational transitions of H2O near 7444 cm-1 and 7185 cm-1. Errors in absorbance fitting is larger when nonlinear or linear coefficients of two lasersbecome closer. The satisfied results can be obtained when linear coefficients ratio is limited whitin a range from 0.05 to 0.67. In addition, the essential transition spacing in multiplexed transmissions, larger than the full width of transitions, is considered to be able to improve the fitting accuracy. This approach is validated in a static absorption cell over a pressure range from 1 to 10 atm at room temperature to demonstrate the ability to measure the blended CO2 spectrum from 63307 cm-1 to 6337 cm-1 by a single DFB laser. The sensor method resolves laser intensity with a nonlinear coefficient of 1.4×10-4 and recovers absorbance with a root mean square (RMS) precision of 3.2%, which demonstrates the applicability of this sensor to high-pressure gas sensing systems. Another approach to validating the gas temperature and measuring H2O by WDM is presented in a gas-liquid two phase pulsed detonation engine running with a filling fraction of 100%. Two fiber coupled lasers, respectively, near 7185.6 cm-1 and 7444.35 cm-1 are scanned at 20 kHz to achieve a temporal resolution of 50 μs for monitoring detonation exhaust. A fixed spectrum interval (about 0.7 cm-1) of transitions in multiplexed transmission is created through temperature adjustment in DFB laser to provide more independent absorption information. Recovered linear coefficients of 0.18 and 0.46 in two DFB lasers are in good agreement with the results from the simulations. An instantaneous temperature measurement of 1183 K in the exhaust 7.45 ms after detonation wave provides the confirmation of the ability of this method to infer the temperature and H2O time histories in the whole detonation process. In conclusion, the novel approach based on TDLAS has tremendous potential applications in high pressure combustion diagnosis and WDM spectrum analysis.
      通信作者: 李宁, phoenixkyo@163.com
    • 基金项目: 国家自然科学基金(批准号:11372141,11472138)资助的课题.
      Corresponding author: Li Ning, phoenixkyo@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372141, 11472138).
    [1]

    Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]

    [2]

    Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]

    [3]

    L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]

    [4]

    Hanson R K 2011 P. Combust. Inst. 33 1

    [5]

    Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407

    [6]

    Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568

    [7]

    Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942

    [8]

    Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865

    [9]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052

    [10]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [12]

    Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949

    [13]

    Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51

    [14]

    Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195

    [15]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [16]

    Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]

    [17]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474

    [18]

    Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]

    [19]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [20]

    Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043

    [21]

    Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224

    [22]

    Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592

    [23]

    Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713

    [24]

    Watson G A 2007 J. Comput. Appl. Math. 208 331

    [25]

    Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351

  • [1]

    Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]

    [2]

    Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]

    [3]

    L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]

    [4]

    Hanson R K 2011 P. Combust. Inst. 33 1

    [5]

    Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407

    [6]

    Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568

    [7]

    Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942

    [8]

    Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865

    [9]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052

    [10]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [12]

    Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949

    [13]

    Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51

    [14]

    Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195

    [15]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [16]

    Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]

    [17]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474

    [18]

    Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]

    [19]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [20]

    Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043

    [21]

    Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224

    [22]

    Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592

    [23]

    Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713

    [24]

    Watson G A 2007 J. Comput. Appl. Math. 208 331

    [25]

    Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351

  • [1] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [2] 庞维煦, 李宁, 黄孝龙, 康杨, 李灿, 范旭东, 翁春生. 基于分数阶Tikhonov正则化的激光吸收光谱燃烧场二维重建光路优化研究. 物理学报, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [3] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [4] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [6] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [7] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [8] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [9] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [10] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [11] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [12] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [13] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [14] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [15] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [16] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [17] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [18] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [19] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  5810
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-26
  • 修回日期:  2017-12-12
  • 刊出日期:  2018-03-05

/

返回文章
返回