-
本文提出了一种紧凑的基于多模干涉效应的氧化钽(Ta2O5)波长双工器,用于实现980nm和1550 nm波长的复用和解复用。该器件采用对称干涉和配对干涉级联的混合多模干涉波导结构,在不利用亚波长光栅等复杂结构调控泵浦光和信号光拍长的基础上,将分段多模干涉波导的总长度缩短为普通配对型多模干涉波导结构的1/3。采用三维有限时域差分(3D-FDTD)工具对建立的模型进行分析和优化,结果表明所设计的MMI型双工器具有较低的插损和较高的工艺容差性,在980 nm处插损为0.4 dB,1550 nm处插损为0.8 dB,消光比均优于16dB。该器件在1550 nm波长周围的1-dB带宽达150 nm,在980 nm波长周围的1-dB带宽达70 nm。文中设计的多级干涉结构极大地降低了MMI器件的设计难度并缩小了980/1550 nm波分复用/解复用器的整体尺寸,有望应用在片上集成的掺铒波导放大器和激光器领域。此外,不同多模干涉机制级联的设计思路为分离两个中心波长相隔较远的光信号提供了技术参考,在通信波段和中红外波段波分复用/解复用器件上具有潜在的应用价值。On-chip erbium-doped/erbium-ytterbium co-doped waveguide amplifiers (EDWAs/EYCDWAs) have received extensive research attention in recent years, As an important component of EDWA, there has been relatively little research on integrated wavelength division multiplexing/demultiplexing devices for 980 nm pump light and 1550 nm signal light. This article aims to propose a compact Ta2O5 980 / 1550 nm wavelength diplexer based on multimode interference effects. The device employs a structure of symmetric interference and paired interference cascade, which reduces the total length of the segmented multimode interference waveguide to one-third of the ordinary paired multimode interference waveguide without using any complex structures such as subwavelength gratings to regulate the beat length of the pump and signal light. The three-dimensional finite difference time domain (3D-FDTD) tool was used to analyze and optimize the established model. The results demonstrate that the designed MMI diplexer has low insertion loss and high process tolerance, with an insertion loss of 0.4 dB at 980 nm and 0.8 dB at 1550 nm, and the extinction ratios are both better than 16 dB. Moreover, the 1-dB bandwidth is up to 150 nm around the 1550 nm wavelength and up to 70 nm around the 980 nm wavelength. The segmented structure designed in the article greatly reduces the design difficulty of MMI devices and reduces the overall size of 980 / 1550 nm wavelength division multiplexers/demultiplexers. It is expected to be applied in on-chip integrated erbium-doped waveguide amplifiers and lasers. In addition, the segmented design approach of cascading the hybrid multimode interference mechanism provides a technical reference for separating two optical signals with far apart center wavelengths such as 800 / 1310 nm and 1550 / 2000 nm, and has potential application value in communication and mid infrared diplexing devices.
-
Keywords:
- Multimode inteference /
- Cascade /
- Wavelength division multiplexing /
- Ta2O5
-
[1] Shekhar S, Bogaerts W, Chrostowski L, Bowers J E, Hochberg M, Soref R, Shastri B J 2024 Nat. Commun. 15751
[2] Gao D S, Zhou Z P 2022 Front. Optoelectron. 1527
[3] Zhou Z P, Chen W B, He X W, Ma D Y 2023 IEEE Photonics J. 160600109.1
[4] Wang B, Zhou P Q, Wang X J, He Y D 2022 Sci. China Inf. Sci. 65162405
[5] Liu Y, Qiu Z R, Ji X R, Lukashchuk A, He J J, Riemensberger J, Hafermann M, Wang R N, Liu J Q, Ronning C, Kippenberg T J 2022 Science 3761309
[6] Bonneville D B, Frankis H C, Wang R J, Bradley J D 2020 Opt. Express 2830130
[7] Rönn J, Zhang W W, Autere A, Leroux X, Pakarinen L, Alonso-Ramos C, Säynätjoki A, Lipsanen H, Vivien L, Cassan E, et al. 2019 Nat. Commun. 10432
[8] Mu J F, Dijkstra M, Korterik J, Offerhaus H, Garc´ıa-Blanco S M 2020 Photonics Res. 81634
[9] Liang Y T, Zhou J X, Liu Z X, Zhang H S, Fang Z W, Zhou Y, Yin D D, Lin J T, Yu J P, Wu R B, Wang M, Cheng Y 2022 Nanophotonics 111033
[10] Zhang Z H, Li S M, Gao R H, Zhang H S, Lin J T, Fang Z W, Wu R B, Wang M, Wang Z H, Hang Y, Cheng Y 2023 Opt. Lett. 484344
[11] Kik P, Polman A 1998 MRS. Bull. 2348
[12] Liu Y, Qiu Z R, Ji X R, Bancora A, Lihachev G, Riemensberger J, Wang R N, Voloshin A, Kippenberg T J 2024 Nat. Photonics 1
[13] Qiu Z R, Ji X R, Liu Y, Hafermann M, Kim T, Olson J C, Ning W R, Ronning C, Kippenberg T J Optical Fiber Communication Conference, San Diego, March 24-28, 2024 M4A.5
[14] Bonneville D B, Osornio-Martinez C E, Dijkstra M, Garc´ıa-Blanco S M 2024 Opt. Express 3215527
[15] Bao R, Fang Z W, Liu J, Liu Z X, Chen J M, Wang M, Wu R B, Zhang H S, Cheng Y 2024 Laser Photonics Rev. Early View 2400765
[16] Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 485799
[17] Subramanian A Z, Murugan G S, Zervas M N, Wilkinson J S 2012 J. Lightwave Technol. 301455
[18] Mu J F, Vázquez-C´ordova S A, Sefunc M A, Yong Y S, Garc´ıa-Blanco S M 2016 J. Lightwave Technol. 343603
[19] Paiam M, Janz C, MacDonald R, Broughton J 1995 IEEE Photonics Technol. Lett. 71180
[20] Han X Y, Pang F F, Cai H W, Qu R H, Fang Z J 2008 Optik 11969
[21] Yang Y D, Li Y, Huang Y Z, Poon A W 2014 Opt. Express 2222172
[22] He J H, Zhang M, Liu D J, Bao Y X, Li C L, Pan B H, Huang Y S, Yu Z J, Liu L, Shi Y C, Dai D X 2024 Nanophotonics 1385
[23] Weissman Z, Nir D, Ruschin S, Hardy A 1995 Appl. Phys. Lett. 67302
[24] Bucci D, Grelin J, Ghibaudo E, Broquin J E 2007 IEEE Photonics Tech. Lett. 19698
[25] Onestas L, Bucci D, Ghibaudo E, Broquin J E 2011 IEEE Photonics Tech. Lett. 23648
[26] Chen S T, Fu X, Wang J, Shi Y C, He S L, Dai D X 2015 J. Lightwave Technol. 332279
[27] Sabri L, Nabki F, Ménard M 2024 Opt. Express 3210660
[28] Pathak S, Dumon P, Van Thourhout D, Bogaerts W 2014 IEEE Photonics J. 61
[29] Pásnikowska A, Stopi´nski S, Kázmierczak A, Piramidowicz R 2023 J. Lightwave Technol.
[30] Liu L, Deng Q Z, Zhou Z P 2017 IEEE Photonics Technol. Lett. 291927
[31] Zhang S C, Ji W, Yin R, Li X, Gong Z S, Lv L Y 2017 IEEE Photonics Technol. Lett. 30107
[32] Han J L, Bao R, Wu R B, Liu Z X, Wang Z, Sun C, Zhang Z H, Li M Q, Fang Z W, Wang M, Zhang H S, Cheng Y 2024 Nanophotonics
[33] Belt M, Davenport M L, Bowers J E, Blumenthal D J 2017 Optica 4532
[34] Zhang C, Chen L, Lin Z L, Song J, Wang D Y, Li M X, Koksal O, Wang Z, Spektor G, Carlson D R, J Lezec H, Zhu W Q, Papp S B, Agrawal A 2024 Light Sci. Appl. 1323
[35] Black J A, Streater R, Lamee K F, Carlson D R, Yu S P, Papp S B 2021 Opt. Lett. 46817
[36] Dorche A E, Nader N, Stanton E J, Nam S W, Mirin R P Optical Fiber Communication Conference, San Diego, March 05-09, 2023 Tu3C–6
[37] Bankwitz J R, Wolff M A, Abazi A S, Piel P M, Jin L, Pernice W H, Wurstbauer U, Schuck C 2023 Opt. Lett. 485783
[38] Splitthoff L, Wolff M A, Grottke T, Schuck C 2020 Opt. Express 2811921
[39] Li Z Y, Fan Z W, Cong Q Y, Zhou J J, Zeng X F, Zheng S N, Dong Y, Hu T, Zhong Q Z, Jia L X 2023 Study on Optical Communications 353. (in Chinese) [李赵一,范作文,丛庆宇,周敬杰,曾宪峰,郑少南,董渊,胡挺,钟其泽,贾连希2023光通信研究3 53]
[40] Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69054206. (in Chinese) [汪静丽,陈子玉,陈鹤鸣2020物理学报69054206]
计量
- 文章访问数: 76
- PDF下载量: 2
- 被引次数: 0