搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于种子脉冲预整形的130 μJ线偏振单频12 μm纤芯铒镱共掺光纤激光器

蒋沛恒 史朝督 付士杰 田浩 盛泉 史伟 沈琪皓 周鼎富 姚建铨

引用本文:
Citation:

基于种子脉冲预整形的130 μJ线偏振单频12 μm纤芯铒镱共掺光纤激光器

蒋沛恒, 史朝督, 付士杰, 田浩, 盛泉, 史伟, 沈琪皓, 周鼎富, 姚建铨
cstr: 32037.14.aps.74.20241371

130 μJ linear-polarized single-frequency 12-μm-core Er/Yb co-doped fiber amplifier based on pre-shaped seed pulse

JIANG Peiheng, SHI Chaodu, FU Shijie, TIAN Hao, SHENG Quan, SHI Wei, SHEN Qihao, ZHOU Dingfu, YAO Jianquan
cstr: 32037.14.aps.74.20241371
PDF
HTML
导出引用
  • 报道了基于种子脉冲预整形实现的百微焦1550 nm线偏振脉冲单频光纤激光器. 通过设计三角形脉冲种子波形, 优化其前沿上升趋势及低强度持续时间, 缓解脉冲激光在放大过程中因增益饱和效应引起的脉冲宽度压缩、激光峰值功率快速增长问题, 实现高能量脉冲单频激光放大. 实验中基于优化设计的脉冲种子波形, 在纤芯直径为12 μm的铒镱共掺光纤中, 实现了脉冲宽度608 ns、能量130 μJ、光谱线宽542 kHz的1550 nm线偏振脉冲单频激光输出.
    Stimulated Brillouin scattering (SBS) is the major barrier in the process of energy scaling for pulsed single-frequency fiber master oscillator power amplifier (MOPA). Due to gain saturation effect, the laser pulse profile will be gradually distorted with the increase of pump power, which induces steep leading edge and narrower width for the amplified pulses. The resulting laser peak power would increase rapidly and thus the SBS threshold is reached earlier to limit the amplification of pulse energy.A method to obtain high-energy pulsed single-frequency laser by pulse pre-shaping is demonstrated in this work. By designing the leading edge of the triangular pulse, optimizing its rising trend and the duration of the low-intensity rising part, the pulse width compression phenomenon caused by gain saturation is alleviated effectively. Thereafter, the laser peak power increase process can be retarded to reach the SBS threshold so that higher energy can be amplified for the pulsed single-frequency fiber laser. In the experiment, when the seed pulse is optimized to be a triangular pulse with a low-intensity rising edge of 401 ns and a pulse width of 520 ns, a linear-polarized pulse single-frequency fiber laser of 130.9 μJ is obtained in a 12-μm-core Er/Yb co-doped polarization-maintaining fiber. The pulse width is broadened to 608 ns at the maximum energy. When it is compared with the triangular pulse seed with a rapidly rising leading edge, its maximum energy is increased by about 25%. The optical signal-to-noise ratio and polarization extinction ratio are measured to be 42 dB and 16 dB at the maximum pulse energy, respectively. The corresponding spectral linewidth measured by a delayed self-heterodyne system is 542 kHz. Higher pulse energy can be anticipated by further optimizing the pulse profile and using large-mode-are gain fibers.
      通信作者: 付士杰, shijie_fu@tju.edu.cn ; 史伟, shiwei@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62375201, 62275190, 62105240)、天津市自然科学基金(批准号: 23JCQNJC01740)、天津大学自主创新基金(批准号: 2023XPD-0020)、中国兵器工业集团有限公司激光器件技术重点实验室开放基金(批准号: QT23120019)、泰山产业领军人才项目(批准号: tscx202312163)和光电信息技术教育重点实验室(天津大学)开放基金(批准号: 2024KFKT007)资助的课题.
      Corresponding author: FU Shijie, shijie_fu@tju.edu.cn ; SHI Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375201, 62275190, 62105240), the National Natural Science Foundation of Tianjin, China (Grant No. 23JCQNJC01740), the Seed Foundation of Tianjin University, China (Grant No. 2023XPD-0020), the Open Foundation of Key Laboratory of Laser Devices and Technology of China North Industries Group Co., LTD (Grant No. QT23120019), the Taishan Industry Leading Talent Project, China (Grant No. tscx202312163), and the Open Foundation of Key laboratory of Opto-electronic Information Technology, Ministry of Education (Tianjin University), China (Grant No. 2024KFKT007).
    [1]

    Kotov L V, Likhachev M E, Bubnov M M, Paramonov V M, Belovolov M I, Lipatov D S, Guryanov A N 2014 Lasers Phys. Lett. 11 095102Google Scholar

    [2]

    Pichugina Y L, Banta R M, Alan Brewer W, Sandberg S P, Michael Hardesty R 2012 J. Appl. Meteorol. Climatol. 51 327Google Scholar

    [3]

    Fu S J, Shi W, Feng Y, et al. 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [4]

    Wan P, Liu J, Yang L M, Amzajerdian F 2011 Opt. Express 19 18067Google Scholar

    [5]

    Khudyakov M M, Lipatov D S, Gur’yanov A N, Bubnov M M, Likhachev M E 2020 Opt. Lett. 45 1782Google Scholar

    [6]

    Nikles M, Thevenaz L, Robert P A 1997 J. Lightwave Technol. 15 1842Google Scholar

    [7]

    Li Y, Wang Y P, Zhang D M, Xiong C, Li P X 2024 Infrared Phys. Technol. 136 105007Google Scholar

    [8]

    刘驰, 冷进勇, 漆云凤, 周军, 丁亚茜, 董景星, 魏运荣, 楼祺洪 2011 中国激光 38 0502001Google Scholar

    Liu C, Leng J Y, Qi Y F, Zhou J, Ding Y X, Dong J X, Wei Y R, Lou Q H 2011 Chin. J. Lasers 38 0502001Google Scholar

    [9]

    田浩, 史朝督, 付士杰, 盛泉, 孙帅, 张帅, 张钧翔, 石争, 蒋沛恒, 史伟, 姚建铨 2021 中国激光 49 1301005

    Tian H, Shi C D, Fu S J, Sheng Q, Sun S, Zhang S, Zhang J X, Shi Z, Jiang P H, Shi W, Yao J Q 2021 Chin. J. Lasers 49 1301005

    [10]

    Nicholson J W, DeSantolo A, Yan M F, Wisk P, Mangan B, Puc G, Yu A W, Stephen M A 2016 Opt. Express 24 19961Google Scholar

    [11]

    Wu J F, Jiang S B, Luo T, Geng J H, Peyghambarian N, Barnes N P 2006 IEEE Photonics Technol. Lett. 18 334Google Scholar

    [12]

    Fang Q, Shi W, Kieu K, Petersen E, Chavez-Pirson A, Peyghambarian N 2012 Opt. Express 20 16410Google Scholar

    [13]

    Lee W, Geng J, Jiang S, Yu A W 2018 Opt. Lett. 43 2264Google Scholar

    [14]

    Akbulut M, Kotov L, Wiersma K, Zong J, Li M, Miller A, Chavez-Pirson A, Peyghambarian N 2021 Photonics 8 15Google Scholar

    [15]

    秦冠仕,郭晓慧,贾志旭,秦伟平 CN202111465449.1 [2022-01-21]]

    Qin G S, Guo X H, Jia Z X, Qin W P CN202111465449.1 [2022-01-21]

    [16]

    Robin C, Dajani I 2011 Opt. Lett. 36 2641Google Scholar

    [17]

    Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar

    [18]

    Zhang X, Diao W F, Liu Y, Zhu X P, Yang Y, Liu J Q, Hou X, Chen W B 2014 Appl. Opt. 53 2465Google Scholar

    [19]

    Zhang X, Diao W F, Liu Y, Liu J Q, Hou X, Chen W B 2014 Appl. Phys. B-Lasers Opt. 115 123Google Scholar

    [20]

    Michalska M, Swiderski J, Mamajek M 2014 Opt. Laser Technol. 60 8Google Scholar

    [21]

    Malinowski A, Vu K T, Chen K K, Nilsson J, Jeong Y, Alam S, Lin D, J. Richardson D 2009 Opt. Express 17 20927Google Scholar

    [22]

    Wang Y P, Li Y, Zhang D M, Xiong C, Li P X 2023 Front. Phys. 11 1330573Google Scholar

    [23]

    Zhang H, Li G Z, Qiao W C, Xu R, Huan H W, Li T, Zhao X, Wang A M, Liu Y Z 2023 J. Lightwave Technol. 41 4822Google Scholar

  • 图 1  (a)—(c)不同上升趋势三角形种子脉冲(脉宽分别为732, 445, 215 ns)放大后波形特性仿真分析

    Fig. 1.  (a)–(c) Simulation analysis of the pulse shape characteristics of the three typical triangle seed pulses with different rising edge (pulse width are 732 , 445, 215 ns) during the amplification.

    图 2  1550 nm线偏振脉冲单频光纤激光MOPA光路示意图

    Fig. 2.  Schematic of the 1550 nm linear-polarized pulsed single-frequency fiber MOPA.

    图 3  经AOM调制产生的三种脉冲种子波形

    Fig. 3.  Three pulse profiles for seed laser generated by AOM

    图 4  (a)—(c)实验设计的三种种子脉冲波形及脉冲放大至最高能量时的波形对比; (d)—(f)主放大级脉冲激光放大过程中脉冲宽度与泵浦功率的关系

    Fig. 4.  (a)–(c) Comparison of the designed three typical seed pulses and the pulses amplified to the maximum energy; (d)–(f) the pulse width as a function of pump power in main amplifier stage.

    图 5  三种波形脉冲的 (a)脉冲能量和(b)峰值功率与主放大级泵浦功率的关系

    Fig. 5.  (a) Pulse energy and (b) peak power of the three pulses as a function of pump power in main amplifier stage.

    图 6  三种波形脉冲放大过程中激光线宽与主放大级泵浦功率的关系

    Fig. 6.  Spectral linewidth evolution of the three pulses as a function of pump power in main amplifier.

    图 7  脉冲2放大至最高能量130.9 μJ时 (a)光谱和(b)偏振消光比

    Fig. 7.  (a) Spectrum and (b) PER of pulse 2 at the maximum pulse energy of 130.9 μJ.

  • [1]

    Kotov L V, Likhachev M E, Bubnov M M, Paramonov V M, Belovolov M I, Lipatov D S, Guryanov A N 2014 Lasers Phys. Lett. 11 095102Google Scholar

    [2]

    Pichugina Y L, Banta R M, Alan Brewer W, Sandberg S P, Michael Hardesty R 2012 J. Appl. Meteorol. Climatol. 51 327Google Scholar

    [3]

    Fu S J, Shi W, Feng Y, et al. 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [4]

    Wan P, Liu J, Yang L M, Amzajerdian F 2011 Opt. Express 19 18067Google Scholar

    [5]

    Khudyakov M M, Lipatov D S, Gur’yanov A N, Bubnov M M, Likhachev M E 2020 Opt. Lett. 45 1782Google Scholar

    [6]

    Nikles M, Thevenaz L, Robert P A 1997 J. Lightwave Technol. 15 1842Google Scholar

    [7]

    Li Y, Wang Y P, Zhang D M, Xiong C, Li P X 2024 Infrared Phys. Technol. 136 105007Google Scholar

    [8]

    刘驰, 冷进勇, 漆云凤, 周军, 丁亚茜, 董景星, 魏运荣, 楼祺洪 2011 中国激光 38 0502001Google Scholar

    Liu C, Leng J Y, Qi Y F, Zhou J, Ding Y X, Dong J X, Wei Y R, Lou Q H 2011 Chin. J. Lasers 38 0502001Google Scholar

    [9]

    田浩, 史朝督, 付士杰, 盛泉, 孙帅, 张帅, 张钧翔, 石争, 蒋沛恒, 史伟, 姚建铨 2021 中国激光 49 1301005

    Tian H, Shi C D, Fu S J, Sheng Q, Sun S, Zhang S, Zhang J X, Shi Z, Jiang P H, Shi W, Yao J Q 2021 Chin. J. Lasers 49 1301005

    [10]

    Nicholson J W, DeSantolo A, Yan M F, Wisk P, Mangan B, Puc G, Yu A W, Stephen M A 2016 Opt. Express 24 19961Google Scholar

    [11]

    Wu J F, Jiang S B, Luo T, Geng J H, Peyghambarian N, Barnes N P 2006 IEEE Photonics Technol. Lett. 18 334Google Scholar

    [12]

    Fang Q, Shi W, Kieu K, Petersen E, Chavez-Pirson A, Peyghambarian N 2012 Opt. Express 20 16410Google Scholar

    [13]

    Lee W, Geng J, Jiang S, Yu A W 2018 Opt. Lett. 43 2264Google Scholar

    [14]

    Akbulut M, Kotov L, Wiersma K, Zong J, Li M, Miller A, Chavez-Pirson A, Peyghambarian N 2021 Photonics 8 15Google Scholar

    [15]

    秦冠仕,郭晓慧,贾志旭,秦伟平 CN202111465449.1 [2022-01-21]]

    Qin G S, Guo X H, Jia Z X, Qin W P CN202111465449.1 [2022-01-21]

    [16]

    Robin C, Dajani I 2011 Opt. Lett. 36 2641Google Scholar

    [17]

    Zhang L, Cui S Z, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456Google Scholar

    [18]

    Zhang X, Diao W F, Liu Y, Zhu X P, Yang Y, Liu J Q, Hou X, Chen W B 2014 Appl. Opt. 53 2465Google Scholar

    [19]

    Zhang X, Diao W F, Liu Y, Liu J Q, Hou X, Chen W B 2014 Appl. Phys. B-Lasers Opt. 115 123Google Scholar

    [20]

    Michalska M, Swiderski J, Mamajek M 2014 Opt. Laser Technol. 60 8Google Scholar

    [21]

    Malinowski A, Vu K T, Chen K K, Nilsson J, Jeong Y, Alam S, Lin D, J. Richardson D 2009 Opt. Express 17 20927Google Scholar

    [22]

    Wang Y P, Li Y, Zhang D M, Xiong C, Li P X 2023 Front. Phys. 11 1330573Google Scholar

    [23]

    Zhang H, Li G Z, Qiao W C, Xu R, Huan H W, Li T, Zhao X, Wang A M, Liu Y Z 2023 J. Lightwave Technol. 41 4822Google Scholar

  • [1] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量. 物理学报, 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [2] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器. 物理学报, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [3] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构. 物理学报, 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [4] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [5] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩. 物理学报, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [6] 王思佳, 顾澄琳, 刘博文, 宋有建, 钱程, 胡明列, 柴路, 王清月. 利用非线性脉冲预整形实现脉冲快速自相似放大. 物理学报, 2013, 62(14): 140601. doi: 10.7498/aps.62.140601
    [7] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究. 物理学报, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [8] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究. 物理学报, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [9] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [10] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法. 物理学报, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [11] 王擂然, 刘雪明, 宫永康. 基于高能量耗散型脉冲掺铒光纤激光器的实验研究. 物理学报, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [12] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究. 物理学报, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [13] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [14] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [15] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [16] 吕月兰, 吕志伟, 董永康. 受激布里渊散射介质CCl4中脉冲传输与功率限幅特性. 物理学报, 2004, 53(7): 2170-2174. doi: 10.7498/aps.53.2170
    [17] 何伟明, 杨 珺, 吕月兰, 吕志伟. 种子场对单池受激布里渊散射脉冲波形保真的影响. 物理学报, 2004, 53(2): 468-472. doi: 10.7498/aps.53.468
    [18] 杨 林, 黄维玲, 丘军林, 冯宝华, 张治国, Volker Gaebler, Baining Liu, Hans J.Eichler. Cr4+:YAG被动调Q激光器中受激粒子上转换效应对脉冲的影响研究. 物理学报, 2003, 52(10): 2471-2475. doi: 10.7498/aps.52.2471
    [19] 徐至展, 唐永红, 钱爱娣. 激光等离子体受激布里渊散射光谱的周期性结构——前向散射的间接证据. 物理学报, 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [20] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射. 物理学报, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
计量
  • 文章访问数:  305
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-11-15
  • 上网日期:  2024-12-06

/

返回文章
返回