-
研究了2 keV电子在直径为800 nm, 长度为10 μm的聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)纳米通道中的输运过程. 结果表明, 当纳米微通道倾角为0°时, 穿透电子的穿透率可达10%, 而当倾角大于几何张角时, 穿透电子的透射率小于1%. 穿透电子角分布中心没有随微孔倾角的变化而移动, 因此没有如在正离子的情况下那样观察到绝缘微孔对电子的导向效应. 在充电达到稳态时, 当微孔倾角小于几何张角时, 电子分裂成上下两个电子斑. 穿透电子的全角分布的时间演化表明, 在充电开始时, 穿透电子为单电子斑. 随着入射电荷量(充电时间)的累积, 穿透电子被上下拉伸, 并逐渐分裂成两个电子斑. 当纳米微孔的倾角超过几何张角时, 穿透电子的分裂趋于消失. 对电子造成微孔内壁上的电荷沉积的模拟计算表明, 微孔表面被激发出大量空穴, 形成正电荷累积; 而部分入射电子沉积于表面以下更深处, 形成负电荷层, 因此不利于产生类似正离子的导向效应. 本文还讨论了造成穿透电子角分布上下分裂的可能原因, 并据此提出验证电子和离子充电机制不同的新的实验方法. 研究结果为利用绝缘微通道控制电子传输技术的发展提供了支撑.The transmission of 2-keV electrons through a polyethylene terephthalate (PET) nanocapillary with a diameter of 800 nm and a length of 10 μm is studied. The transmitted electrons are detected using microchannel plate (MCP) with a phosphor screen. It is found that the transmission rate for the transmitted electrons with the incident energy can reach up to 10 % for an aligned capillary in the beam direction, but drops to less than 1% when the tilt angle exceeds the geometrical allowable angle. The transmitted electrons with the incident energy do not move with change of tilt angle, so the incident electrons are not guided in the insulating capillary, which is different from the scenario of positive ions. In the final stage of the transmission, the angular distribution of the transmitted electrons within the geometrical allowable angle splits into two peaks along the observation angle perpendicular to the tilt angle. The time evolution of the transmitted full angular distribution shows that when the beam turns on, the transmission profile forms a single peak. As the incident charge and time accumulate, the transmission profile starts to stretch in the plane perpendicular to the tilt angle and gradually splits into two peaks. When the tilt angle of the nanocapillary exceeds the geometrical allowable angle, this splitting tends to disappear. Simulation of the charge deposition in the capillary directly exposed to the beam indicates the formation of positive charge patches, which are not conducive to guidance, as seen in the case of positive ions. According to the simulation results, we can explain our data. Then, the possible reasons for the splitting the transmission angular profiles are discussed.
-
Keywords:
- insulating nanocapillaries /
- low energy electrons /
- guiding effect
-
图 3 不同倾角下2 keV电子在静止状态下通过PET纳米微孔的二维穿透角分布 (a)二维穿透角分布; (b) θ平面上的穿透角分布投影
Fig. 3. Two-dimensional penetration angle distribution of 2 keV electrons through PET nanopores in a stationary state at different inclination angles: (a) Two-dimensional penetration angle distribution; (b) θ plane penetration angle distribution projection.
图 5 充电过程中2 keV电子在0°倾角下通过 PET 纳米微孔的穿透全角分布随时间的演变 (a)电子穿透率的演变; (b)二维穿透角分布图像及投影图
Fig. 5. The time evolution of transmitted angular distributions of 2 keV electrons at the tilt angle of 0° through PET nanocapillaries during the charging process: (a) The evolution of electron transmission rates; (b) projections of the transmitted angular distributions.
图 8 2 keV电子在4°入射角下造成PET材料表面电荷沉积的计算结果 (a)入射电子沉积强度的二维分布图及其(b)在深度上的强度分布投影图; (c)表面空穴强度的二维分布图及其(d)在深度上的强度分布投影图.
Fig. 8. Calculated results of charge deposition on the surface of PET material caused by 2 keV electrons at an incidence angle of 4°: (a) The two-dimensional distribution of the intensity of the incident electron deposition and (b) its intensity distribution projection at depth; (c) the two-dimensional distribution of the surface hole intensity, and (d) its intensity distribution projection at depth.
-
[1] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar
[2] Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902Google Scholar
[3] Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901(R
[4] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Phys. Lett. 89 163502
[5] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instr. Meth. Phys. Res. B 258 145Google Scholar
[6] Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X. A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B. 18 2739Google Scholar
[7] Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar
[8] Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar
[9] Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar
[10] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar
[11] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar
[12] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar
[13] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar
[14] Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar
[15] Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar
[16] Giglio E, Guillous S, Cassimi A, Zhang H Q, Nagy G U L, Tőkési K 2017 Phys. Rev. A 95 030702(R
[17] Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar
[18] Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar
[19] Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar
[20] 万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 物理学报 73 104101Google Scholar
Wan C L, Pan Y Z, Zhu L P, Zhang H W, Zhao Z Y, Yuan H, Li P F, Fan X H, Sun W S, Du Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101Google Scholar
[21] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar
[22] Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lv X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar
[23] Chen L, Lv X Y, Jia J J, Ji M C, Zhou P, Sun G Z, Wang J, Chen Y F, Xi F Y, Cui Y, Shao J X, Qiu X Y, Guo Y L, Chen X M 2011 Phys. B: At. Mol. Opt. Phys. 44 045203Google Scholar
[24] Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar
[25] 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2020 物理学报 69 094101Google Scholar
Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Niu B, Wei L, Zhang Q, Liu Z L, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2020 Acta Phys. Sin. 69 094101Google Scholar
[26] 刘中林, 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 张琦, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2021 原子核物理评论 38 95Google Scholar
Liu Z L, Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Zhang Q, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2021 Nucl. Phys. Rev. 38 95Google Scholar
[27] Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901(R
[28] Milosavljević A R, Jureta J, Víkor G, Pešić Z D, Šević D, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P 2009 Europhys. Lett. 86 23001Google Scholar
[29] Milosavljević A, Schiessl K, Lemell C, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P, Burgdörfer J 2012 Nucl. Instr. Meth. Phys. Res. B 279 190.Google Scholar
[30] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar
[31] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar
[32] Dassanayake B S, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 298 1Google Scholar
[33] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 317 105Google Scholar
[34] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2016 Nucl. Instr. Meth. Phys. Res. B 382 67Google Scholar
[35] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar
[36] Vokhmyanina K A, Kubankin A S, Myshelovka L V, Zhang H Q, Kaplii A A, Sotnikova V S, Zhukova M A 2020 J. Instrum. 15 C04003Google Scholar
[37] Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701(R
[38] Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar
[39] Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701Google Scholar
[40] Stolterfoht N, Tanis J A 2018 Nucl. Instr. Meth. Phys. Res. B 421 32Google Scholar
[41] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar
Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar
[42] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万城亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar
Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar
[43] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar
[44] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar
[45] 周鹏, 万城亮, 袁华, 程紫东, 李鹏飞, 张浩文, 崔莹, 张红强, 陈熙萌 2023 强激光与粒子束 35 026001Google Scholar
Zhou P, Wan C L, Yuan H, Cheng Z D, Li P F, Zhang H W, Cui Y, Zhang H Q, Chen X M 2023 High Pow. Laser Part. Beams 35 026001Google Scholar
[46] Data sheets of Mylar (http://www.dupontteijinfilms.com
[47] Hovington P, Drouin D, Gauvin R. 1997 Scanning 19 1Google Scholar
[48] Drouin D, Couture A R, Joly D, Taster X, Aimez V, Gauvin R 2007 Scanning 29 92Google Scholar
[49] Demers H, Poirrier-Demers N, Couture A R, Joly D, Guilmain M, Jonge N D, Drouin D 2011 Scanning 33 135Google Scholar
[50] Joy D C, Luo S 1989 Scanning 11 176Google Scholar
[51] Lowney J R 1996 Scanning 18 301Google Scholar
[52] Reimer L 1998 Scanning Electron Microscopy 2nd (Berlin: Springer) pp57-134
计量
- 文章访问数: 227
- PDF下载量: 4
- 被引次数: 0