-
研究了2 keV电子在直径为800 nm,长度为10 μm的PET纳米通道中的输运过程。结果表明,当纳米微通道倾角为0°时,穿透电子的穿透率可达10%,而当倾角大于几何张角时,穿透电子的透射率小于1%。穿透电子角分布中心没有随微孔倾角的变化而移动,因此没有如在正离子的情况下那样观察到绝缘微孔对电子的导向效应。在充电达到稳态时,当微孔倾角小于几何张角时,电子分裂成上下两个电子斑。穿透电子的全角分布的时间演化表明,在充电开始时,穿透电子为单电子斑。随着入射电荷量(充电时间)的累积,穿透电子被上下拉伸,并逐渐分裂成两个电子斑。当纳米微孔的倾角超过几何张角时,穿透电子的分裂趋于消失。对电子造成微孔内壁上的电荷沉积的模拟计算表明,微孔表面被激发出大量空穴,形成正电荷累积;而部分入射电子沉积于表面以下更深处,形成负电荷层,因此不利于产生类似正离子的导向效应。本文还讨论了造成穿透电子角分布上下分裂的可能原因,并据此提出验证电子和离子充电机制不同的新的实验方法。研究结果为利用绝缘微通道控制电子传输技术的发展提供了支撑。The transmission of 2-keV electrons through Polyethylene Terephthalate (PET) nanocapillaries with 800 nm diameter and 10 μm length was studied. The transmitted electrons were detected using microchannel plates (MCPs) with a phosphor screen. It is found that the transmission rate for the transmitted electrons with the incident energy can reach up to 10 % for the aligned capillaries in the beam direction, but drops to less than 1 % when the tilt angle exceeds the geometrical allowed angle. There is no corresponding shift of the transmitted electrons with the incident energy as the tilt angle changes, and thus no guiding of the incident electrons in the insulating capillaries, unlike what is observed with positive ions. The angular distribution of the transmitted electrons within the geometrical allowed angle splits into two peaks along the observation angle perpendicular to the tilt angle in the final stage of the transmission. The time evolution of the transmitted full angular distribution shows that, at the beginning when the beam turns on, the transmission profile forms a single peak. As the incident charge/time accumulates, the transmission profile starts stretching in the plane perpendicular to the tilt angle and gradually splits into two peaks. This splitting tends to disappear as the tilt angle of the nanocapillaries increases beyond the geometrical allowed angle. Simulation of the charge deposition in the capillaries, directly exposed to the beam, indicates that positive charge patches are formed, which are not conducive to guiding, as seen with positive ions. Depending on the simulation results, we provide an explanation for our data. Then, the possible reasons for the splitting of the transmission angular profiles are discussed.
-
Keywords:
- Insulating nanocapillaries /
- Low energy electrons /
- Guiding effect
-
[1] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201.
[2] Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902.
[3] Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901(R).
[4] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Phys. Lett. 89 163502.
[5] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instr. Meth. Phys. Res. B 258 145.
[6] Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X.A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B. 18 2739.
[7] Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Inst. Meth. Phys. Res. B 267 674
[8] Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381.
[9] Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903.
[10] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202.
[11] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901.
[12] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901.
[13] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202.
[14] Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901
[15] Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704.
[16] Giglio E, Guillous S, Cassimi A, Zhang H Q, Nagy G U L, Tőkési K 2017 Phys. Rev. A 95 030702(R).
[17] Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704.
[18] Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237.
[19] Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1.
[20] Wan C L, Pan Y Z, Zhu L P, Zhang H W, Zhao Z Y, Yuan H, Li P F, Fan X H, Sun W S, Du Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101 (in Chinese) [万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 物理学报 73 104101].
[21] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902.
[22] Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lv X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901.
[23] Chen L, Lv X Y, Jia J J, Ji M C, Zhou P, Sun G Z, Wang J, Chen Y F, Xi F Y, Cui Y, Shao J X, Qiu X Y, Guo Y L, Chen X M 2011 Phys. B: At. Mol. Opt. Phys. 44 045203.
[24] Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704.
[25] Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Niu B, Wei L, Zhang Q, Liu Z L, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2020 Acta Phys. Sin. 69 094101(in Chinese) [哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2020 物理学报69 094101]
[26] Liu Z L, Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Zhang Q, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2021 Nucl. Phys. Rev. 38 95 (in Chinese) [刘中林, 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 张琦, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2021 原子核物理评论 38 95]
[27] Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901(R).
[28] Milosavljević A R, Jureta J, Víkor G, Pešić Z D, Šević D, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P 2009 Europhys. Lett. 86 23001.
[29] Milosavljević A, Schiessl K, Lemell C, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P, Burgdörfer J 2012 Nucl. Instr. Meth. Phys. Res. B 279 190.
[30] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716.
[31] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201.
[32] Dassanayake B S, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 298 1.
[33] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 317 105.
[34] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2016 Nucl. Instr. Meth. Phys. Res. B 382 67.
[35] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703.
[36] Vokhmyanina K A, Kubankin A S, Myshelovka L V, Zhang H Q, Kaplii A A, Sotnikova V S, Zhukova M A 2020 J. Instrum. 15 C04003.
[37] Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701(R).
[38] Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707.
[39] Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701.
[40] Stolterfoht N, Tanis J A 2018 Nucl. Instr. Meth. Phys. Res. B 421 32.
[41] Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103 (in Chinese) [万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103]
[42] Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101 (in Chinese) [钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万城亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报66 124101]
[43] Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101 (in Chinese) [李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101].
[44] Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104 (in Chinese) [李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104]
[45] Zhou P, Wan C L, Yuan H, Cheng Z D, Li P F, Zhang H W, Cui Y, Zhang H Q, Chen X M 2023 High Pow. Laser Part. Beams 35 026001 (in Chinese) [周鹏, 万城亮, 袁华, 程紫东, 李鹏飞, 张浩文, 崔莹, 张红强, 陈熙萌 2023 强激光与粒子束 35 026001]
[46] Data sheets of Mylar (http://www.dupontteijinfilms.com)
[47] Hovington P, Drouin D, Gauvin R. 1997 Scanning 19 1.
[48] Drouin D, Couture A R, Joly D, Taster X, Aimez V, Gauvin R 2007 Scanning 29 92.
[49] Demers H, Poirrier-Demers N, Couture A R, Joly D, Guilmain M, Jonge N D, Drouin D 2011 Scanning 33 135.
[50] Joy D C, Luo S 1989 Scanning 11 176.
[51] Lowney J R 1996 Scanning 18 301.
[52] Reimer L 1998 Scanning electron microscopy 2nd (Berlin: Springer) p57-134.
计量
- 文章访问数: 90
- PDF下载量: 2
- 被引次数: 0