搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能电子在直径为800 nm的聚对苯二甲酸乙二醇酯纳米微通道中的输运过程

李鹏飞 刘宛琦 哈帅 潘俞舟 樊栩宏 杜战辉 万城亮 崔莹 姚科 马越 杨治虎 邵曹杰 Reinhold Schuch 路迪 宋玉收 张红强 陈熙萌

引用本文:
Citation:

低能电子在直径为800 nm的聚对苯二甲酸乙二醇酯纳米微通道中的输运过程

李鹏飞, 刘宛琦, 哈帅, 潘俞舟, 樊栩宏, 杜战辉, 万城亮, 崔莹, 姚科, 马越, 杨治虎, 邵曹杰, Reinhold Schuch, 路迪, 宋玉收, 张红强, 陈熙萌

Transmission of low energy electrons through a polyethylene terephthalate 800-nm diameter nanocapillary

Li Peng-Fei, Liu Wan-Qi, Ha Shuai, Pan Yu-Zhou, Fan Xu-Hong, Du Zhan-Hui, Wan Cheng-Liang, Cui Ying, Yao Ke, Ma Yue, Yang Zhi-Hu, Shao Cao-Jie, Reinhold Schuch, Lu Di, Song Yu-Shou, Zhang Hong-Qiang, Chen Xi-Meng
PDF
HTML
导出引用
  • 研究了2 keV电子在直径为800 nm, 长度为10 μm的聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)纳米通道中的输运过程. 结果表明, 当纳米微通道倾角为0°时, 穿透电子的穿透率可达10%, 而当倾角大于几何张角时, 穿透电子的透射率小于1%. 穿透电子角分布中心没有随微孔倾角的变化而移动, 因此没有如在正离子的情况下那样观察到绝缘微孔对电子的导向效应. 在充电达到稳态时, 当微孔倾角小于几何张角时, 电子分裂成上下两个电子斑. 穿透电子的全角分布的时间演化表明, 在充电开始时, 穿透电子为单电子斑. 随着入射电荷量(充电时间)的累积, 穿透电子被上下拉伸, 并逐渐分裂成两个电子斑. 当纳米微孔的倾角超过几何张角时, 穿透电子的分裂趋于消失. 对电子造成微孔内壁上的电荷沉积的模拟计算表明, 微孔表面被激发出大量空穴, 形成正电荷累积; 而部分入射电子沉积于表面以下更深处, 形成负电荷层, 因此不利于产生类似正离子的导向效应. 本文还讨论了造成穿透电子角分布上下分裂的可能原因, 并据此提出验证电子和离子充电机制不同的新的实验方法. 研究结果为利用绝缘微通道控制电子传输技术的发展提供了支撑.
    The transmission of 2-keV electrons through a polyethylene terephthalate (PET) nanocapillary with a diameter of 800 nm and a length of 10 μm is studied. The transmitted electrons are detected using microchannel plate (MCP) with a phosphor screen. It is found that the transmission rate for the transmitted electrons with the incident energy can reach up to 10 % for an aligned capillary in the beam direction, but drops to less than 1% when the tilt angle exceeds the geometrical allowable angle. The transmitted electrons with the incident energy do not move with change of tilt angle, so the incident electrons are not guided in the insulating capillary, which is different from the scenario of positive ions. In the final stage of the transmission, the angular distribution of the transmitted electrons within the geometrical allowable angle splits into two peaks along the observation angle perpendicular to the tilt angle. The time evolution of the transmitted full angular distribution shows that when the beam turns on, the transmission profile forms a single peak. As the incident charge and time accumulate, the transmission profile starts to stretch in the plane perpendicular to the tilt angle and gradually splits into two peaks. When the tilt angle of the nanocapillary exceeds the geometrical allowable angle, this splitting tends to disappear. Simulation of the charge deposition in the capillary directly exposed to the beam indicates the formation of positive charge patches, which are not conducive to guidance, as seen in the case of positive ions. According to the simulation results, we can explain our data. Then, the possible reasons for the splitting the transmission angular profiles are discussed.
  • 图 1  实验装置示意图, 定义微孔轴向与电子束之间的倾角ψ, 以及电子束的观测角度ϕθ

    Fig. 1.  A schematic drawing of the experimental setup, the tilt angle ψ between the axes of capillaries and the electron beam, the observation angles ϕ and θ given with respect to the electron beam are defined.

    图 2  2 keV电子的二维穿透电子分布图像和对应的ϕθ平面上的投影

    Fig. 2.  A primary beam profile of 2 keV electrons and the corresponding projections on the planes of ϕ and θ.

    图 3  不同倾角下2 keV电子在静止状态下通过PET纳米微孔的二维穿透角分布 (a)二维穿透角分布; (b) θ平面上的穿透角分布投影

    Fig. 3.  Two-dimensional penetration angle distribution of 2 keV electrons through PET nanopores in a stationary state at different inclination angles: (a) Two-dimensional penetration angle distribution; (b) θ plane penetration angle distribution projection.

    图 4  稳态下2 keV电子的电子穿透率与倾角ψ的关系, 红色虚线表示几何穿透角

    Fig. 4.  The transmission rate of 2 keV electrons in stationary state as a function of ψ, the red dash lines stand for the geometrical transmission angle.

    图 5  充电过程中2 keV电子在0°倾角下通过 PET 纳米微孔的穿透全角分布随时间的演变 (a)电子穿透率的演变; (b)二维穿透角分布图像及投影图

    Fig. 5.  The time evolution of transmitted angular distributions of 2 keV electrons at the tilt angle of 0° through PET nanocapillaries during the charging process: (a) The evolution of electron transmission rates; (b) projections of the transmitted angular distributions.

    图 6  在0°入射时, 随着充电时间的累积, θ平面上的上峰(a)和下峰(b)位置的演变

    Fig. 6.  At 0° incidence, as the charge time accumulates, the evolution of upper (a) and lower (b) peak positions on plane, respectively.

    图 7  CASINO使用的PET样品的三维模型

    Fig. 7.  The 3-dimensional model of PET sample used in CASINO.

    图 8  2 keV电子在4°入射角下造成PET材料表面电荷沉积的计算结果 (a)入射电子沉积强度的二维分布图及其(b)在深度上的强度分布投影图; (c)表面空穴强度的二维分布图及其(d)在深度上的强度分布投影图.

    Fig. 8.  Calculated results of charge deposition on the surface of PET material caused by 2 keV electrons at an incidence angle of 4°: (a) The two-dimensional distribution of the intensity of the incident electron deposition and (b) its intensity distribution projection at depth; (c) the two-dimensional distribution of the surface hole intensity, and (d) its intensity distribution projection at depth.

    图 9  倾角为0°时, 穿透电子分布示意图

    Fig. 9.  Schematic diagram of the distribution of transmitted electrons at 0° tilt angle.

  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [2]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [3]

    Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901(R

    [4]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Phys. Lett. 89 163502

    [5]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instr. Meth. Phys. Res. B 258 145Google Scholar

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X. A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B. 18 2739Google Scholar

    [7]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Yamazaki Y, Khemliche H, Bundaleski N, Roncin P 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar

    [8]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar

    [9]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R J, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [10]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [11]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [12]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [13]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [14]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [15]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [16]

    Giglio E, Guillous S, Cassimi A, Zhang H Q, Nagy G U L, Tőkési K 2017 Phys. Rev. A 95 030702(R

    [17]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [18]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [19]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [20]

    万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, Reinhold Schuch, 张红强 2024 物理学报 73 104101Google Scholar

    Wan C L, Pan Y Z, Zhu L P, Zhang H W, Zhao Z Y, Yuan H, Li P F, Fan X H, Sun W S, Du Z H, Chen Q, Cui Y, Liao T F, Wei X H, Wang T Q, Chen X M, Li G P, Schuch R, Zhang H Q 2024 Acta Phys. Sin. 73 104101Google Scholar

    [21]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lv X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar

    [22]

    Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lv X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar

    [23]

    Chen L, Lv X Y, Jia J J, Ji M C, Zhou P, Sun G Z, Wang J, Chen Y F, Xi F Y, Cui Y, Shao J X, Qiu X Y, Guo Y L, Chen X M 2011 Phys. B: At. Mol. Opt. Phys. 44 045203Google Scholar

    [24]

    Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [25]

    哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 牛犇, 魏龙, 张琦, 刘中林, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2020 物理学报 69 094101Google Scholar

    Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Niu B, Wei L, Zhang Q, Liu Z L, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2020 Acta Phys. Sin. 69 094101Google Scholar

    [26]

    刘中林, 哈帅, 张文铭, 谢一鸣, 李鹏飞, 靳博, 张琦, 马越, 路迪, 万城亮, 崔莹, 周鹏, 张红强, 陈熙萌 2021 原子核物理评论 38 95Google Scholar

    Liu Z L, Ha S, Zhang W M, Xie Y M, Li P F, Jin B, Zhang Q, Ma Y, Lu D, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2021 Nucl. Phys. Rev. 38 95Google Scholar

    [27]

    Milosavljević A R, Víkor Gy, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901(R

    [28]

    Milosavljević A R, Jureta J, Víkor G, Pešić Z D, Šević D, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P 2009 Europhys. Lett. 86 23001Google Scholar

    [29]

    Milosavljević A, Schiessl K, Lemell C, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B P, Burgdörfer J 2012 Nucl. Instr. Meth. Phys. Res. B 279 190.Google Scholar

    [30]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [32]

    Dassanayake B S, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 298 1Google Scholar

    [33]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2013 Nucl. Instr. Meth. Phys. Res. B 317 105Google Scholar

    [34]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2016 Nucl. Instr. Meth. Phys. Res. B 382 67Google Scholar

    [35]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar

    [36]

    Vokhmyanina K A, Kubankin A S, Myshelovka L V, Zhang H Q, Kaplii A A, Sotnikova V S, Zhukova M A 2020 J. Instrum. 15 C04003Google Scholar

    [37]

    Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701(R

    [38]

    Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar

    [39]

    Wickramarachchi S J, Ikeda T, Dassanayake B S, Keerthisinghe D, Tanis J A 2016 Phys. Rev. A 94 022701Google Scholar

    [40]

    Stolterfoht N, Tanis J A 2018 Nucl. Instr. Meth. Phys. Res. B 421 32Google Scholar

    [41]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [42]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万城亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [43]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [44]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar

    [45]

    周鹏, 万城亮, 袁华, 程紫东, 李鹏飞, 张浩文, 崔莹, 张红强, 陈熙萌 2023 强激光与粒子束 35 026001Google Scholar

    Zhou P, Wan C L, Yuan H, Cheng Z D, Li P F, Zhang H W, Cui Y, Zhang H Q, Chen X M 2023 High Pow. Laser Part. Beams 35 026001Google Scholar

    [46]

    Data sheets of Mylar (http://www.dupontteijinfilms.com

    [47]

    Hovington P, Drouin D, Gauvin R. 1997 Scanning 19 1Google Scholar

    [48]

    Drouin D, Couture A R, Joly D, Taster X, Aimez V, Gauvin R 2007 Scanning 29 92Google Scholar

    [49]

    Demers H, Poirrier-Demers N, Couture A R, Joly D, Guilmain M, Jonge N D, Drouin D 2011 Scanning 33 135Google Scholar

    [50]

    Joy D C, Luo S 1989 Scanning 11 176Google Scholar

    [51]

    Lowney J R 1996 Scanning 18 301Google Scholar

    [52]

    Reimer L 1998 Scanning Electron Microscopy 2nd (Berlin: Springer) pp57-134

  • [1] 万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, ReinholdSchuch, 张红强. 基于玻璃毛细管的大气环境MeV质子微束的产生与测量. 物理学报, doi: 10.7498/aps.73.20240301
    [2] 石志奇, 何晓, 刘琳, 陈德华, 王秀明. 毛细管压力作用下的非饱和双重孔隙介质中弹性波传播. 物理学报, doi: 10.7498/aps.72.20222063
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, doi: 10.7498/aps.71.20212435
    [4] 姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳. 一种毛细管聚焦的微束X射线衍射仪. 物理学报, doi: 10.7498/aps.68.20190497
    [5] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程. 物理学报, doi: 10.7498/aps.66.093401
    [6] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, doi: 10.7498/aps.65.095201
    [7] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌. 低能电子穿越玻璃直管和锥管动力学研究. 物理学报, doi: 10.7498/aps.65.204103
    [8] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, doi: 10.7498/aps.64.124703
    [9] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究. 物理学报, doi: 10.7498/aps.62.098503
    [10] 员美娟, 郑伟, 李云宝, 李钰. 单毛细管中赫切尔-巴尔克莱流体的分形分析. 物理学报, doi: 10.7498/aps.61.164701
    [11] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, doi: 10.7498/aps.60.095202
    [12] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, doi: 10.7498/aps.59.4110
    [13] 陈益峰, 陈熙萌, 娄凤君, 徐进章, 绍剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫. Al2O3微孔膜对60 keV O+离子的“导向”效应. 物理学报, doi: 10.7498/aps.59.222
    [14] 郭铁英, 娄淑琴, 李宏雷, 简水生. 用于制作光子晶体光纤的毛细管的拉制理论与实验分析. 物理学报, doi: 10.7498/aps.58.4724
    [15] 李维勤, 张海波. 低能电子束照射接地绝缘薄膜的负带电过程. 物理学报, doi: 10.7498/aps.57.3219
    [16] 于江周, 冯 灏, 孙卫国. 低能电子与氮分子碰撞振动激发动量迁移截面的研究. 物理学报, doi: 10.7498/aps.57.4143
    [17] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, doi: 10.7498/aps.55.4734
    [18] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, doi: 10.7498/aps.55.733
    [19] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, doi: 10.7498/aps.54.2731
    [20] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, doi: 10.7498/aps.54.4979
计量
  • 文章访问数:  227
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-10-19
  • 上网日期:  2024-12-03

/

返回文章
返回