搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于受激布里渊散射能量转移的冲击点火激光技术研究

袁强 魏晓峰 张小民 张鑫 赵军普 黄文会 胡东霞

引用本文:
Citation:

基于受激布里渊散射能量转移的冲击点火激光技术研究

袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞

Study on stimulated Brillouin scatting energy transfer to amplify laser pulses for shock ignition in laser fusion facilities

Yuan Qiang, Wei Xiao-Feng, Zhang Xiao-Min, Zhang Xin, Zhao Jun-Pu, Huang Wen-Hui, Hu Dong-Xia
PDF
导出引用
  • 提出一种新型的激光放大技术, 高效地实现冲击点火所需的102 ps级高功率激光脉冲. 该技术耦合了传统的激光驱动器放大技术和受激布里渊散射(SBS) 脉冲压缩技术, 在不改变现有激光装置主体结构的前提下, 使用长脉冲(数 ns) 充分提取主放大器储能, 然后在系统输出端通过SBS进行脉冲自抽运的能量转移, 将长脉冲能量转移给102 ps级的冲击脉冲, 实现高效放大的目的. 该技术在主动控制下实现能量转移, 将克服传统SBS压缩时间特性不可控的缺点, 输出满足冲击点火时域特性要求的精密控制激光脉冲.
    Shock ignition is considered as a relatively robust way to achieve the efficient fuel burn in inertial confinement fusion. However it requires intense laser pulses of sub-ns to launch strong convergent shock to ignite the pre-compressed target. Here we present a novel method, which has a substantially high extraction efficiency, to amplify laser pulses of ~200 ps for shock ignition. In this method, stacking pulse with a Stokes light of ~200 ps in the front and a pump light of ~5 ns following, is employed to propagate in the amplifier to extract the stored energy, then in the final system after harmonic conversion, laser energy is transferred from pump pulse to probe pulse by stimulated Brillouin scattering. Because of employing long pulse in the main amplifier, an output laser energy of 1520 kJ is achievable at fundamental frequency. Simulations show that the energy transfer efficiency is up to 75%, considering harmonic conversion efficiency of 60%80%, implying that 510 kJ laser pulses of ~200 ps can be produced using this scheme. As a result, only ~20 beams are required to generate the ignitor, reducing the cost for realizing the shock ignition.
    • 基金项目: 国家自然科学基金(批准号: 11074225, 10904132) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074225, 10904132).
    [1]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001

    [2]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [3]
    [4]
    [5]

    Kodama R, Shiraga H, Shigemori K, Toyama Y, Fujioka S, Azechi H, Fujita H, Habara H, Hall T, Izawa Y, Jitsuno T, Kitagawa Y, Krushelnick K M, Lancaster K L, Mima K, Nagai K, Nakai M, Nishimura H, Norimatsu T, Norreys P A, Sakabe S, Tanaka K A, Youssef A, Zepf M, Yamanaka T 2002 Nature 418 933

    [6]
    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [8]

    Nuckolls J O, Wood L O, Thiessen A L, Zimmerman G E 1972 Nature 239 139

    [9]
    [10]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [11]
    [12]

    Lindl J 1995 Phys. Plasmas 2 3933

    [13]
    [14]
    [15]

    Theobald W, Betti R, Stoeckl C, Anderson K S, Delettrez J A, Glebov V Y, Goncharov V N, Marshall F J, Maywar D N, Mccrory R L, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Shvarts D, Smalyuk V A, Solodov A A, Yaakobi B, Zhou C D, Frenje J A, Li C K, Seguin F H, Petrasso R D, Perkins L J 2008 Phys. Plasmas 15 56301

    [16]
    [17]

    Ribeyre X, Schurtz G, Lafon M, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 15013

    [18]
    [19]

    Perkins L J, Betti R, Lafortune K N, Williams W H 2009 Phys. Rev. Lett. 103 45004

    [20]

    Schmitt A J, Bates J W, Obenschain S R, Zalesak S T, Fyfe D E, Betti R 2009 Fusion Sci. Technol. 56 377

    [21]
    [22]

    Ribeyre X, Lafon M, Schurtz G, Olazabal-Loume M, Breil J, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 124030

    [23]
    [24]
    [25]

    Schmitt A J, Bates J W, Obenschain S P, Zalesak S T, Fyfe D E 2010 Phys. Plasmas 17 42701

    [26]

    Canaud B, Temporal M 2010 New J. Phys. 12 43037

    [27]
    [28]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Contr. F 52 55013

    [29]
    [30]
    [31]

    Lafon M, Ribeyre X, Schurtz G 2010 Phys. Plasmas 17 52704

    [32]
    [33]

    Bates J W, Schmitt A J, Fyfe D E, Obenschain S P, Zalesak S T 2010 High Energ. Dens. Phys. 6 128

    [34]

    Atzeni S, Schiavi A, Marocchino A 2011 Plasma Phys. Contr. F 53 35010

    [35]
    [36]

    Canaud B, Laffite S, Temporal M 2011 Nucl. Fusion 51 62001

    [37]
    [38]
    [39]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 015202]

    [40]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 045207]

    [41]
    [42]
    [43]

    Cecchetti C A, Giulietti A, Koester P, Labate L, Levato T, Gizzi L A, Antonelli L, Patria A, Batani D, Kozlova M, Margarone D, Nejdl J, Rus B, Sawicka M, Lafon M, Ribeyre X, Schurtz G 2011 Proc. SPIE 8080 80802A

    [44]
    [45]

    Canaud B, Garaude F, Clique C, Lecler N, Masson A, Quach R, Van der Vliet J 2007 Nucl. Fusion 47 1652

    [46]
    [47]

    Marozas J A, Marshall F J, Craxton R S, Igumenshchev I V, Skupsky S, Bonino M J, Collins T J B, Epstein R, Glebov V Y, Jacobs-Perkins D, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Noyes S G, Radha P B, Sangster T C, Seka W, Smalyuk V A 2006 Phys. Plasmas 13 56311

    [48]
    [49]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, Mckenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 56304

    [50]

    Canaud B, Fortin X, Garaude F, Meyer C, Philippe F, Temporal M, Atzeni S, Schiavi A 2004 Nucl. Fusion 44 1118

    [51]
    [52]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, Mckenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, Mccrory R L 2004 Phys. Plasmas 11 2763

    [53]
    [54]
    [55]

    Canaud B, Fortin X, Dague N, Bocher J L 2002 Phys. Plasmas 9 4252

    [56]

    Mckenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, Mccrory R L 2001 Phys. Plasmas 8 2315

    [57]
    [58]

    Dane C B, Zapata L E, Neuman W A, Norton M A, Hackel L A 1995 IEEE J. Quantum Elect. 31 148

    [59]
    [60]
    [61]

    Sirazetdinov V S, Alekseev V N, Charukhchev A V, Kotilev V N, Liber V I, Serebryakov V A 1999 Proc. SPIE 3492 1002

    [62]

    Yoshida H, Hatae T, Fujita H, Nakatsuka M, Kitamura S 2009 Opt. Express 17 13654

    [63]
    [64]
    [65]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: IOP Publishing)

    [66]

    Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004 Jpn. J. Appl. Phys. 43 L1038

    [67]
    [68]
    [69]

    Yoshida H, Kmetik V, Fujita H, Nakatsuka M, Yamanaka T, Yoshida K 1997 Appl. Opt. 36 3739

  • [1]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001

    [2]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [3]
    [4]
    [5]

    Kodama R, Shiraga H, Shigemori K, Toyama Y, Fujioka S, Azechi H, Fujita H, Habara H, Hall T, Izawa Y, Jitsuno T, Kitagawa Y, Krushelnick K M, Lancaster K L, Mima K, Nagai K, Nakai M, Nishimura H, Norimatsu T, Norreys P A, Sakabe S, Tanaka K A, Youssef A, Zepf M, Yamanaka T 2002 Nature 418 933

    [6]
    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798

    [8]

    Nuckolls J O, Wood L O, Thiessen A L, Zimmerman G E 1972 Nature 239 139

    [9]
    [10]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [11]
    [12]

    Lindl J 1995 Phys. Plasmas 2 3933

    [13]
    [14]
    [15]

    Theobald W, Betti R, Stoeckl C, Anderson K S, Delettrez J A, Glebov V Y, Goncharov V N, Marshall F J, Maywar D N, Mccrory R L, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Shvarts D, Smalyuk V A, Solodov A A, Yaakobi B, Zhou C D, Frenje J A, Li C K, Seguin F H, Petrasso R D, Perkins L J 2008 Phys. Plasmas 15 56301

    [16]
    [17]

    Ribeyre X, Schurtz G, Lafon M, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 15013

    [18]
    [19]

    Perkins L J, Betti R, Lafortune K N, Williams W H 2009 Phys. Rev. Lett. 103 45004

    [20]

    Schmitt A J, Bates J W, Obenschain S R, Zalesak S T, Fyfe D E, Betti R 2009 Fusion Sci. Technol. 56 377

    [21]
    [22]

    Ribeyre X, Lafon M, Schurtz G, Olazabal-Loume M, Breil J, Galera S, Weber S 2009 Plasma Phys. Contr. F 51 124030

    [23]
    [24]
    [25]

    Schmitt A J, Bates J W, Obenschain S P, Zalesak S T, Fyfe D E 2010 Phys. Plasmas 17 42701

    [26]

    Canaud B, Temporal M 2010 New J. Phys. 12 43037

    [27]
    [28]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Contr. F 52 55013

    [29]
    [30]
    [31]

    Lafon M, Ribeyre X, Schurtz G 2010 Phys. Plasmas 17 52704

    [32]
    [33]

    Bates J W, Schmitt A J, Fyfe D E, Obenschain S P, Zalesak S T 2010 High Energ. Dens. Phys. 6 128

    [34]

    Atzeni S, Schiavi A, Marocchino A 2011 Plasma Phys. Contr. F 53 35010

    [35]
    [36]

    Canaud B, Laffite S, Temporal M 2011 Nucl. Fusion 51 62001

    [37]
    [38]
    [39]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 015202]

    [40]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207 (in Chinese) [袁强, 胡东霞, 张鑫, 赵军谱, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 045207]

    [41]
    [42]
    [43]

    Cecchetti C A, Giulietti A, Koester P, Labate L, Levato T, Gizzi L A, Antonelli L, Patria A, Batani D, Kozlova M, Margarone D, Nejdl J, Rus B, Sawicka M, Lafon M, Ribeyre X, Schurtz G 2011 Proc. SPIE 8080 80802A

    [44]
    [45]

    Canaud B, Garaude F, Clique C, Lecler N, Masson A, Quach R, Van der Vliet J 2007 Nucl. Fusion 47 1652

    [46]
    [47]

    Marozas J A, Marshall F J, Craxton R S, Igumenshchev I V, Skupsky S, Bonino M J, Collins T J B, Epstein R, Glebov V Y, Jacobs-Perkins D, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Noyes S G, Radha P B, Sangster T C, Seka W, Smalyuk V A 2006 Phys. Plasmas 13 56311

    [48]
    [49]

    Craxton R S, Marshall F J, Bonino M J, Epstein R, Mckenty P W, Skupsky S, Delettrez J A, Igumenshchev I V, Jacobs-Perkins D W, Knauer J P, Marozas J A, Radha P B, Seka W 2005 Phys. Plasmas 12 56304

    [50]

    Canaud B, Fortin X, Garaude F, Meyer C, Philippe F, Temporal M, Atzeni S, Schiavi A 2004 Nucl. Fusion 44 1118

    [51]
    [52]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, Mckenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Harding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, Mccrory R L 2004 Phys. Plasmas 11 2763

    [53]
    [54]
    [55]

    Canaud B, Fortin X, Dague N, Bocher J L 2002 Phys. Plasmas 9 4252

    [56]

    Mckenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, Mccrory R L 2001 Phys. Plasmas 8 2315

    [57]
    [58]

    Dane C B, Zapata L E, Neuman W A, Norton M A, Hackel L A 1995 IEEE J. Quantum Elect. 31 148

    [59]
    [60]
    [61]

    Sirazetdinov V S, Alekseev V N, Charukhchev A V, Kotilev V N, Liber V I, Serebryakov V A 1999 Proc. SPIE 3492 1002

    [62]

    Yoshida H, Hatae T, Fujita H, Nakatsuka M, Kitamura S 2009 Opt. Express 17 13654

    [63]
    [64]
    [65]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: IOP Publishing)

    [66]

    Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004 Jpn. J. Appl. Phys. 43 L1038

    [67]
    [68]
    [69]

    Yoshida H, Kmetik V, Fujita H, Nakatsuka M, Yamanaka T, Yoshida K 1997 Appl. Opt. 36 3739

  • [1] 高凡, 袁鹏, 黄浩彬, 寇琦, 贾青, 远晓辉, 张喆, 张杰, 郑坚. 双锥对撞点火实验中的交叉束能量转移与背向受激布里渊散射. 物理学报, 2023, 72(17): 175203. doi: 10.7498/aps.72.20230442
    [2] 范旭阳, 陈瀚超, 王鹿霞. 弱耦合近似下激子-激子湮灭动力学研究. 物理学报, 2021, 70(22): 227302. doi: 10.7498/aps.70.20211242
    [3] 续卓, 郭竞渊, 熊正烨, 唐强, 高沐. 掺Tm3+和Tb3+的LiMgPO4磷光体的发光光谱与能量转移. 物理学报, 2021, 70(16): 167801. doi: 10.7498/aps.70.20210357
    [4] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究. 物理学报, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [5] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [6] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [7] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [8] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [9] 吴清洋, 谢国华, 张振松, 岳守振, 王鹏, 陈宇, 郭闰达, 赵毅, 刘式墉. 基于连续性掺杂的高效全荧光白色有机电致发光器件的研究. 物理学报, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [10] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [11] 王军转, 石卓琼, 娄昊楠, 章新栾, 左则文, 濮林, 马恩, 张荣, 郑有炓, 陆昉, 施毅. 掺铒Si/Al2O3多层结构中结晶形态对1.54 μm发光的影响. 物理学报, 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
    [12] 徐登. 有机盐掺杂聚合物微腔的受激发射特性研究(已撤稿). 物理学报, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [13] 沈 涵, 刘 杰, 陈志峰, 黄锦汪, 沈 勇, 王 惠, 计亮年. 卟啉和钌二元体的超快能量转移. 物理学报, 2008, 57(11): 7354-7359. doi: 10.7498/aps.57.7354
    [14] 徐 登, 叶莉华, 崔一平, 奚 俊, 李 丽, 王 琼. 基于有机染料盐掺杂薄膜体系的能量转移及光致发光特性研究. 物理学报, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [15] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [16] 宋淑芳, 赵德威, 徐 征, 徐叙瑢. 有机多层量子阱的能量转移. 物理学报, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 张 鹏, 周印华, 刘秀芬, 田文晶, 李 敏, 张 国. PVK:DBVP掺杂体系的能量转移及发光性质的研究. 物理学报, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [19] 于春雷, 戴世勋, 周 刚, 张军杰, 胡丽丽, 姜中宏. 掺铒碲酸盐玻璃中的浓度猝灭机理研究. 物理学报, 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [20] 冯志芳, 王义全, 许兴胜, 江少林, 郝伟, 程丙英, 张道中. 光子晶体中双通道之间能量的转移. 物理学报, 2004, 53(1): 62-65. doi: 10.7498/aps.53.62
计量
  • 文章访问数:  6763
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-16
  • 修回日期:  2012-06-04
  • 刊出日期:  2012-06-05

/

返回文章
返回