搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Tm3+和Tb3+的LiMgPO4磷光体的发光光谱与能量转移

续卓 郭竞渊 熊正烨 唐强 高沐

引用本文:
Citation:

掺Tm3+和Tb3+的LiMgPO4磷光体的发光光谱与能量转移

续卓, 郭竞渊, 熊正烨, 唐强, 高沐

Luminescence spectra and energy transfer of Tm3+ and Tb3+ doped in LiMgPO4 phosphors

Xu Zhuo, Guo Jing-Yuan, Xiong Zheng-Ye, Tang Qiang, Gao Mu
PDF
HTML
导出引用
  • 稀土掺杂的LiMgPO4(LMP)磷光体是一种很有前景的辐射剂量计材料, 热释光谱技术是研究材料中载流子陷阱和发光中心的有效手段. 为研究稀土掺杂LMP的发光机制, 用高温固相法研制了LMP:Tm, LMP:Tb和LMP:Tm, Tb磷光体, 用线性升温法测量了磷光体的热释光发光曲线和热释光谱, 并将之与荧光谱进行了对比分析. 实验结果表明: 在LiMgPO4磷光体中, Tm3+, Tb3+共掺可使磷光体在300 ℃左右的热释光显著增强; LMP磷光体的热释光谱中可观测到比一般荧光谱更丰富的Tm3+离子和Tb3+离子的跃迁; Tm3+和Tb3+虽然都可成为发光中心, 但Tm3+起主要作用; 结合对热释光谱和荧光谱的深入分析, 可知磷光体中存在Tb3+→Tm3+的能量转移.
    LiMgPO4 (LMP) phosphor doped with rare earth is a promising radiation dosimeter material. Thermoluminescence (TL) spectroscopy is an effective method to study the carrier traps and luminescence centers in materials. To study the luminescent mechanism of rare-earth-doped LMP phosphors, LMP phosphors doped with Tm and Tb (LMP:Tm, LMP:Tb and LMP:Tm, Tb) are prepared by high temperature solid state reaction. The TL glow curve and TL spectrum of the phosphors are measured by the linear heating method, and compared with the photoluminescence (PL) spectrum. The shape of the TL glow curve of LMP phosphor varies with the doping active impurities, but the TL glow curves can be fitted by seven TL peaks. Double-doping Tm3+ and Tb3+ in LMP phosphor can enhance the TL intensity of the fifth peak (E ~ 1.39 eV) and weaken the seventh TL peak (E ~ 1.70 eV). By comparing the PL spectra with TL spectra of the phosphors, it can be seen that the TL spectra are more complex than the PL spectra excited by ultraviolet light (λ = 352 nm). In the TL process, the electrons which are excited to the conduction band release the energy to recombination centers, and the released energy can more effectively excite the rare earth ions from the ground state to excited states, resulting in the more TL emitting peaks than in the the PL process. Although Tm3+ and Tb3+ can be the luminescent centers in LMP phosphors when Tm3+ and Tb3+ are doped in LMP simultaneously, Tb3+ ions are likely to act as sensitizers in LMP:Tm and LMP:Tb phosphor, and Tb3+ ions transfer energy to the low-energy Tm3+ ions, which makes the luminescent centers, Tm3+ ions, excited to the high-energy state and then de-excited with emitting light. This result is also proved by the fact that the luminescence decay of Tb3+ in phosphors increases with Tm3+ concentration increasing. The energy transfer through non-radiative transition is more significant at higher temperature.
      通信作者: 熊正烨, xiongzhengye@139.com
    • 基金项目: 广东省科技计划(批准号: 2015A020216020)、国家自然科学基金(批准号: 11375278)和广东海洋大学(批准号: CXXL2019260)资助的课题
      Corresponding author: Xiong Zheng-Ye, xiongzhengye@139.com
    • Funds: Project supported by Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015A020216020), the National Natural Science Foundation of China (Grant No. 11375278) and Guangdong Ocean University, China(Grant No. CXXL2019260)
    [1]

    Daniels F, Boyd C A, Saunders D F 1953 Science 117 343Google Scholar

    [2]

    Xiong Z Y, Xu J Y, Zhao F L, Zhang Y, Liu J, Tang Q 2017 J. Lumin. 192 85Google Scholar

    [3]

    ZhangS, HuangY, Shi L, Seo H J 2010 J. Phys. Condens. Matter 22 235402Google Scholar

    [4]

    Gai M Q, Chen C Y, Fan Y W, Wang J H 2013 J. Rare Earths 31 551Google Scholar

    [5]

    Dhabekar B, Menon S N, Raja E A, Bakshi A K, Singh A K, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Meth. Phys. A 269 1844Google Scholar

    [6]

    Singh A K, Menon S N, Dhabekar B, Kadam S, Chougaonkar M P, Mayya Y S 2012 Nucl. Instrum. Meth. Phys. A 274 177Google Scholar

    [7]

    Bajaj N S, Palan C B, Koparkar K A, Kulkarni M S, Omanwar S K 2016 J. Lumin. 175 915

    [8]

    郭竞渊, 唐强, 唐桦明, 张纯祥, 罗达铃, 刘小伟 2017 物理学报 66 107802Google Scholar

    GuoJ Y, Tang Q, Tang H M, Zhang C X, Luo D L, Liu X W 2017 Acta Phys. Sin. 66 107802Google Scholar

    [9]

    Baran A, Mahlik S, Grinberg M, Cai P, Kim S I, Seo H J 2014 J. Phys. Condens. Matter 26 85401Google Scholar

    [10]

    Kumar M, Dhabekar B, Menon S N, Bakshi A K 2013 Radiat. Prot. Dosim. 155 410Google Scholar

    [11]

    Kumar M, Dhabekar B, Menon S N, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Methods Phys. Res. B 269 1849Google Scholar

    [12]

    Gieszczyk W, Bilski P, Osowski M K, Nowak T, Malinowski L 2018 Radiat. Meas. 113 1419

    [13]

    Keskin I C, Türemis M, Kat M I, Gültekin S, Arslanlar Y T, Cetin A, Kibar R 2020 J. Lumin. 225 117276Google Scholar

    [14]

    Tang H M, Lin L T, Zhang C X, Tang Q 2019 Inorg. Chem. 58 9698Google Scholar

    [15]

    郭竞渊, 唐强, 兰婷婷, 张纯祥, 罗达玲 2015 中国稀土学报 33 404

    Guo J Y, Tang Q, Lan T T, Zhang C X, Luo D L 2015 J. Chin. Rare Earths Soc. 33 404

    [16]

    Gieszczyk W, Marczewska B, Kosowski M, Mrozik A, Stoch P 2019 Materials 12 2861Google Scholar

    [17]

    Hanic F, Handlovic M, Burdova K, Majling J 1982 J. Cryst. Spectrosc. 12 99Google Scholar

    [18]

    詹明亮, 陈瑶窈, 续卓, 熊正烨 2020 核技术 43 050501Google Scholar

    Zhan M L, Chen Y Y, Xu Z, Xiong Z Y 2020 Nucl. Tech. 43 050501Google Scholar

    [19]

    McKeever S W S 1988 Thermoluminescence of Solids (London: Cambridge University Press) p75

    [20]

    Liu X, Teng Y, Zhuang Y, Xie J, Qiao Y, Dong G, Chen D, Qiu J 2009 Opt. Lett. 22 3565

  • 图 1  LMP磷光体的XRD与标准卡片对比图

    Fig. 1.  XRD of LMP phosphors doped with rare earth.

    图 2  LMP:Tb0.5at%磷光体的热释光发光曲线及其拟合

    Fig. 2.  TL glow curve and the fitting of LMP:Tb0.5at% phosphor.

    图 3  LMP:Tm0.5at%磷光体的热释光发光曲线及其拟合

    Fig. 3.  TL glow curve and the fitting of LMP:Tm0.5at% phosphor.

    图 4  LMP:Tb0.5at%, Tm0.5at%磷光体的热释光发光曲线及其拟合 (a) 线性纵坐标; (b)对数纵坐标

    Fig. 4.  TL glow curve and the fitting of LMP:Tb0.5at%, Tm0.5at% phosphor: (a) The ordinate is in linear scale; (b) the ordinate is in logarithmic scale.

    图 5  LMP:Tb0.5at%, Tmxat%磷光体在352 nm的近紫外光激发时的发光谱

    Fig. 5.  Luminescence spectra of phosphors LMP:Tb0.5at%, Tm x at% excited by ultraviolet light (λ = 352 nm).

    图 6  LMP:Tb0.5at%, Tm x at%磷光体荧光(λEm = 450 nm)衰减曲线

    Fig. 6.  Luminescence Decay Curves (λEm = 450 nm) of phosphors LMP:Tb0.5at%, Tm x at%.

    图 7  (a) LMP:Tb0.5at%磷光体的热释光谱 (b) LMP:Tm0.5at%磷光体的热释光谱 (c) LMP:Tb0.5at%, Tm0.5at%磷光体的热释光谱

    Fig. 7.  (a). TL contour spectra of phosphors LMP:Tb0.5at%. (b). TL contour spectra of phosphors LMP:Tm0.5at%. (c). TL contour spectra of phosphors LMP:Tb0.5at%, Tm0.5at%.

    图 8  (a) LMP:Tb0.5at%磷光体不同温区的热释光谱 (b) LMP:Tm0.5at%磷光体不同温区的热释光谱 (c) LMP:Tm0.5at%, Tb0.5at%磷光体不同温区的热释光谱

    Fig. 8.  (a). TL spectra of phosphors LMP:Tb0.5at% in different temperature ranges. (b). TL spectra of phosphors LMP:Tm0.5at% in different temperature ranges. (c). TL spectra of phosphors LMP:Tm0.5at%, Tb0.5at% in different temperature ranges.

    图 9  Tm离子和Tb离子的能级跃迁示意图

    Fig. 9.  Diagrammatic sketch of energy transition of Tm and Tb ions.

    表 1  LMP:Tb0.5at%磷光体的热释光陷阱参数

    Table 1.  TL trap’s parameters of LMP:Tb0.5at% phosphor.

    峰序号E/eVs/Hzn0b
    峰10.874.18 × 10111.68 × 1051.5
    峰20.992.28 × 10121.11 × 1051.3
    峰31.024.39 × 10112.76 × 1052.0
    峰41.174.88 × 10102.84 × 1052.0
    峰51.391.23 × 10111.64 × 1052.0
    峰61.641.32 × 10121.32 × 1052.0
    峰71.703.67 × 10114.84 × 1051.6
    下载: 导出CSV

    表 2  LMP:Tm0.5at%磷光体的热释光陷阱参数

    Table 2.  TL trap’s parameters of LMP:Tm0.5at% phosphor.

    峰序号E/eVs/Hzn0b
    峰10.897.92 × 10118.83 × 1041.2
    峰21.013.31 × 10122.34 × 1052.0
    峰31.088.00 × 10101.04 × 1051.5
    峰41.204.27 × 10101.85 × 1051.2
    峰51.388.32 × 10102.83 × 1051.3
    峰61.631.17 × 10124.50 × 1041.3
    峰71.694.26 × 10113.67 × 1041.0
    下载: 导出CSV

    表 3  LMP:Tb0.5at, Tm0.5at%磷光体的热释光陷阱参数

    Table 3.  TL trap’s parameters of LMP:Tb0.5at%, Tm0.5at% phosphor.

    峰序号E/eVs/Hzn0b
    峰10.859.30 × 10111.48 × 1051.9
    峰20.951.89 × 10129.83 × 1042.0
    峰31.092.74 × 10124.02 × 1042.0
    峰41.164.99 × 10112.48 × 1051.4
    峰51.406.26 × 10113.80 × 1061.2
    峰61.588.31 × 10122.13 × 1051.5
    峰71.702.18 × 10123.09 × 1031.1
    下载: 导出CSV

    表 4  LMP:Tb0.5at%, Tm0.5at%磷光体中Tb3+向Tm3+的能量转移效率

    Table 4.  The efficiency of energy transfer from Tb3+ to Tm3+ in LMP:Tb0.5at%, Tm0.5at% phosphor.

    xτ/μsστ/μsηETσηET
    066.51.1
    0.0533.30.349.9%1.0%
    0.1026.60.260.0%1.1%
    0.2020.30.269.5%1.4%
    1.0013.40.379.8%2.3%
    下载: 导出CSV
  • [1]

    Daniels F, Boyd C A, Saunders D F 1953 Science 117 343Google Scholar

    [2]

    Xiong Z Y, Xu J Y, Zhao F L, Zhang Y, Liu J, Tang Q 2017 J. Lumin. 192 85Google Scholar

    [3]

    ZhangS, HuangY, Shi L, Seo H J 2010 J. Phys. Condens. Matter 22 235402Google Scholar

    [4]

    Gai M Q, Chen C Y, Fan Y W, Wang J H 2013 J. Rare Earths 31 551Google Scholar

    [5]

    Dhabekar B, Menon S N, Raja E A, Bakshi A K, Singh A K, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Meth. Phys. A 269 1844Google Scholar

    [6]

    Singh A K, Menon S N, Dhabekar B, Kadam S, Chougaonkar M P, Mayya Y S 2012 Nucl. Instrum. Meth. Phys. A 274 177Google Scholar

    [7]

    Bajaj N S, Palan C B, Koparkar K A, Kulkarni M S, Omanwar S K 2016 J. Lumin. 175 915

    [8]

    郭竞渊, 唐强, 唐桦明, 张纯祥, 罗达铃, 刘小伟 2017 物理学报 66 107802Google Scholar

    GuoJ Y, Tang Q, Tang H M, Zhang C X, Luo D L, Liu X W 2017 Acta Phys. Sin. 66 107802Google Scholar

    [9]

    Baran A, Mahlik S, Grinberg M, Cai P, Kim S I, Seo H J 2014 J. Phys. Condens. Matter 26 85401Google Scholar

    [10]

    Kumar M, Dhabekar B, Menon S N, Bakshi A K 2013 Radiat. Prot. Dosim. 155 410Google Scholar

    [11]

    Kumar M, Dhabekar B, Menon S N, Chougaonkar M P, Mayya Y S 2011 Nucl. Instrum. Methods Phys. Res. B 269 1849Google Scholar

    [12]

    Gieszczyk W, Bilski P, Osowski M K, Nowak T, Malinowski L 2018 Radiat. Meas. 113 1419

    [13]

    Keskin I C, Türemis M, Kat M I, Gültekin S, Arslanlar Y T, Cetin A, Kibar R 2020 J. Lumin. 225 117276Google Scholar

    [14]

    Tang H M, Lin L T, Zhang C X, Tang Q 2019 Inorg. Chem. 58 9698Google Scholar

    [15]

    郭竞渊, 唐强, 兰婷婷, 张纯祥, 罗达玲 2015 中国稀土学报 33 404

    Guo J Y, Tang Q, Lan T T, Zhang C X, Luo D L 2015 J. Chin. Rare Earths Soc. 33 404

    [16]

    Gieszczyk W, Marczewska B, Kosowski M, Mrozik A, Stoch P 2019 Materials 12 2861Google Scholar

    [17]

    Hanic F, Handlovic M, Burdova K, Majling J 1982 J. Cryst. Spectrosc. 12 99Google Scholar

    [18]

    詹明亮, 陈瑶窈, 续卓, 熊正烨 2020 核技术 43 050501Google Scholar

    Zhan M L, Chen Y Y, Xu Z, Xiong Z Y 2020 Nucl. Tech. 43 050501Google Scholar

    [19]

    McKeever S W S 1988 Thermoluminescence of Solids (London: Cambridge University Press) p75

    [20]

    Liu X, Teng Y, Zhuang Y, Xie J, Qiao Y, Dong G, Chen D, Qiu J 2009 Opt. Lett. 22 3565

  • [1] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究. 物理学报, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [2] 吴丽, 王倩, 李国栋, 窦巧娅, 吉旭. 不同退火温度的Al2O3:C薄膜热释光和光释光性能. 物理学报, 2016, 65(3): 037802. doi: 10.7498/aps.65.037802
    [3] 程帅, 徐旭辉, 王鹏久, 邱建备. 新型电子俘获型材料β-Sr2SiO4:Eu2+, La3+长余辉和光激励发光性能的研究. 物理学报, 2015, 64(1): 017802. doi: 10.7498/aps.64.017802
    [4] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [5] 罗达玲, 唐强, 郭竞渊, 张纯祥. MSO4:Eu2+(M =Mg, Ca, Sr, Ba)的等电子陷阱与热释光特性. 物理学报, 2015, 64(8): 087805. doi: 10.7498/aps.64.087805
    [6] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [7] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [8] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [9] 吴清洋, 谢国华, 张振松, 岳守振, 王鹏, 陈宇, 郭闰达, 赵毅, 刘式墉. 基于连续性掺杂的高效全荧光白色有机电致发光器件的研究. 物理学报, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [10] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究. 物理学报, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [11] 沈 涵, 刘 杰, 陈志峰, 黄锦汪, 沈 勇, 王 惠, 计亮年. 卟啉和钌二元体的超快能量转移. 物理学报, 2008, 57(11): 7354-7359. doi: 10.7498/aps.57.7354
    [12] 徐 登, 叶莉华, 崔一平, 奚 俊, 李 丽, 王 琼. 基于有机染料盐掺杂薄膜体系的能量转移及光致发光特性研究. 物理学报, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [13] 杨新波, 李红军, 徐 军, 程 艳, 苏良碧, 唐 强. α-Al2O3:C晶体的热释光和光释光特性. 物理学报, 2008, 57(12): 7900-7905. doi: 10.7498/aps.57.7900
    [14] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [15] 宋淑芳, 赵德威, 徐 征, 徐叙瑢. 有机多层量子阱的能量转移. 物理学报, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [16] 张 鹏, 周印华, 刘秀芬, 田文晶, 李 敏, 张 国. PVK:DBVP掺杂体系的能量转移及发光性质的研究. 物理学报, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [17] 唐 强, 张纯祥, 梁宝鎏, 李德卉, 罗达玲. SrSO4:Eu磷光体的光释光特性. 物理学报, 2005, 54(1): 64-69. doi: 10.7498/aps.54.64
    [18] 张纯祥, 唐强, 罗达玲. CaSO4∶Eu磷光体的热释光特性研究. 物理学报, 2002, 51(12): 2881-2886. doi: 10.7498/aps.51.2881
    [19] 刘波, 施朝淑, 周东方, 戚泽明, 胡关钦, 汤洪高. 掺Gd3+,Y3+对PbWO_4低温热释光的影响. 物理学报, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [20] 刘 波, 施朝淑, 魏亚光, 吴 灿, 李裕熊, 胡关钦, 沈定中. 掺Y对PbWO4闪烁体的热释光影响. 物理学报, 2000, 49(10): 2078-2082. doi: 10.7498/aps.49.2078
计量
  • 文章访问数:  3415
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 修回日期:  2021-03-27
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回