搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单面双极性磁铁空间磁感应强度模型

苏徐昆 冷永刚 张雨阳 范胜波

引用本文:
Citation:

单面双极性磁铁空间磁感应强度模型

苏徐昆, 冷永刚, 张雨阳, 范胜波

Study on the model of space magnetic induction of a bi-pole magnet

Su Xu-Kun, Leng Yong-Gang, Zhang Yu-Yang, Fan Sheng-Bo
PDF
HTML
导出引用
  • 两个尺寸差异较大的永磁体在同极性相对时, 若迫使二者间距减小, 磁铁间的相互作用力会由斥力转变为吸引力, 大磁铁局部退磁, 从而形成单面双极性磁铁. 本文基于磁化电流理论, 构建了单面双极性磁铁空间磁感应强度的分析模型, 该模型能计算表面局部退磁的单面双极性磁铁的空间磁感应强度. 以中心局部退磁的圆柱形永磁体为例, 探讨了小磁铁尺寸和磁化强度对于该类单面双极性磁铁空间磁场的影响, 证明了该单面双极性磁铁可等效为一种可调控局部空间磁场的环形磁铁, 因而可为应用环形磁铁的机电系统提供新思路和理论依据.
    This article proposed an equivalent model to calculate the magnetic field of a special multipole magnet. The special multipole magnet is formed when two permanent magnets of large dimension differences are forced into contact with the same polarity, after the removal of the small magnet, the large magnet becomes the multipole magnet. In the process, the interacting force between the two magnets changes from repulsive force to attractive force as the two magnets approach. Moreover, the reversed pole of the multipole magnet occupies an area roughly the same as the contact area of the two magnets. Qualitatively, the large magnet possesses a lower load line than the small magnet, which suggests that the large magnet is prone to irreversible demagnetization, whereas the small magnet tends to remain unperturbed. Quantitatively, taking axially magnetized cylindrical magnets as examples, the equations for the magnetic fields were derived based on the magnetizing current theory under the assumption that the magnetization of the multipole magnet is locally homogeneous. To validate our equivalent model, two special multipole magnets (model A and model B) have been studied both theoretically and experimentally. Model A was obtained by a large magnet ($\Phi40\times2.5$) demagnetized at the center by a small magnet ($\Phi12\times18$), model B was obtained by demagnetizing model A with 4 extra small magnets ($\Phi6\times20$) at specific symmetrical positions around the center. Measurements for the magnetic induction intensity of the special multipole magnets are in good agreement with the theoretical calculations. The results suggested that the special multipole magnets of model A and B are equivalent to ring magnets and porous magnets, where the near field magnetic induction of the multipole magnets can be adjusted by the small magnets. In addition, a parameter analysis was carried out to study the influence of small magnets on the special multipole magnets. The results indicated that the reversed pole behavior of the special multipole magnet works mainly at positions near the magnet, and decreases rapidly as the observation point moves away from the reversed area. Our model may provide a theoretical basis and alternative solutions for electromechanical systems using multipole magnets.
      通信作者: 冷永刚, leng_yg@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFD0700704)和国家自然科学基金(批准号: 51675370)资助的课题
      Corresponding author: Leng Yong-Gang, leng_yg@tju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFD0700704) and the National Natural Science Foundation of China (Grant No. 51675370)
    [1]

    Coey J M D 2002 J. Magn. Magn. Mater. 248 3

    [2]

    Lu Z, Wang Z X, Zhou Y, Lu X L 2018 J. Sound Vib. 423 18Google Scholar

    [3]

    Fu H L, Theodossiades S, Gunn B, Abdallah I, Chatzi, E 2020 Nonlinear Dyn. 101 4

    [4]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601Google Scholar

    [5]

    Lai S K, Wang C, Zhang L H 2019 Mech. Syst. Signal Process 122 87Google Scholar

    [6]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [7]

    Schomburg W K, Reinertz O, Sackmann J, Schmitz K 2020 J. Magn. Magn. Mater. 506 166694Google Scholar

    [8]

    Peng Q L 2007 J. Magn. Magn. Mater. 309 1Google Scholar

    [9]

    Zhang Y Y, Leng Y G, Tan D, Liu J J 2018 J. Magn. 23 4

    [10]

    Caciagli A, Baars R J, Philipse A P, Kuipers B W 2018 J. Magn. Magn. Mater. 456 423Google Scholar

    [11]

    Zhang Y Y, Leng Y G, Liu J J, Tan D 2019 J. Magn. 24 3

    [12]

    Zhang Y Y, Leng Y G 2020 Int. J. Appl. Electromagn. Mech. 62 2

    [13]

    Ruoho S, Arkkio A 2008 IEEE Trans. Magn. 44 7

    [14]

    Campbell P 1996 Permanent Magnet Materials and Their Application (Cambridge, U.K.: Cambridge University Press) pp64–65

    [15]

    孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波 2020 物理学报 69 140502Google Scholar

    Sun S L, Leng Y G, Zhang Y Y, Su X K, Fan S B 2020 Acta Phys. Sin. 69 140502Google Scholar

    [16]

    Shin H S, Jang G H, Choi J Y 2020 AIP Adv. 10 1

    [17]

    Ponce E A, Leeb S B 2020 IEEE Trans. Magn. 56 3Google Scholar

    [18]

    O’Connell J L, Robertson W S, Cazzolato B S 2020 J. Magn. Magn. Mater. 510 166894Google Scholar

    [19]

    De Visschere P 2005 J. Phys. D: Appl. Phys. 38 3

    [20]

    Nguyen V T, Lu T F 2019 J. Magn. Magn. Mater. 491 165569Google Scholar

    [21]

    Landau L D, Lifschitz E M 1975 The Classical Theory of Fields (Vol. 2) (Oxford: Pergamon Press) pp89−108

    [22]

    Landau L D, Lifschitz E M 1984 Electrodynamics of Continuous Media (Vol. 8) (Oxford: Pergamon Press) pp105−113

  • 图 1  圆柱形磁铁表面多处接触反磁化示意图

    Fig. 1.  Schematic diagram of a cylindrical magnet with multiple local demagnetization on the surface.

    图 2  (a), (b) 磁显片下$ \varPhi \;40\times2.5 $$ \varPhi \;12\times18 $的正常磁铁; (c) 中心接触反磁化结果: 小磁铁被吸附在大磁铁中心; (d) 磁感应强度测量实验装置

    Fig. 2.  (a), (b) Normal magnets of size $ \varPhi \;40\times2.5 $ and $ \varPhi \;12\times18 $ under magnetic field viewing film; (c) the small magnet is observed to be attracted to the center of the large magnet after the local demagnetization process at the center of the large magnet; (d) experiment setup for the measurement of magnetic induction intensity.

    图 3  正常磁铁轴向磁感应强度$ B_z(z) $. 红色圆点为实验测量结果, 蓝色直线为磁化电流模型计算结果 (a) 大磁铁$ \varPhi \;40\times2.5 $; (b) 小磁铁$ \varPhi \;12\times18 $

    Fig. 3.  The axial magnetic induction intensity $ B_z(z) $ of a normal magnet. Red dot denotes the experimental data whereas the blue line denotes the theoretical results: (a) Larger magnet $ \varPhi \;40\times2.5 $; (b) smaller magnet $ \varPhi \;12\times18 $.

    图 4  模型A: 仅中心接触反磁化的圆柱磁铁 (a) 反常磁铁示意图; (b) 磁显片下的反常磁铁

    Fig. 4.  Model A: Cylindrical magnet with local demagnetization at the center: (a) Diagram of the abnormal magnet; (b) the abnormal magnet under magnetic field viewing film.

    图 5  (a) 模型A反常磁铁轴向磁感应强度$ B_z(z) $. 红色圆点为实验测量结果, 蓝色直线为磁化电流模型计算结果. (b) 正常圆柱形磁铁, 反常磁铁和正常环形磁铁轴向磁感应强度, 其中三种磁铁外形尺寸均一致

    Fig. 5.  (a) The axial magnetic induction intensity $ B_z(z) $ for the abnormal magnet. Red dot denotes the experimental data whereas the blue line denotes the theoretical results. (b) The axial magnetic induction intensity $ B_z(z) $ of a normal cylindrical magnet, an abnormal magnet and a normal ring magnet, of which the dimensions of the three are the same.

    图 6  模型B: 中心及轨道反磁化的圆柱形磁铁 (a) 反常磁铁示意图. 为便于阅读, 图中四个小圆的半径放大了一倍. (b) 磁显片下的反常磁铁

    Fig. 6.  Model B: Cylindrical magnet with local demagnetization at both the center and the orbit: (a) Diagram of the abnormal magnet. For the convenience of reading, the radii of the four small circles in the figure are doubled. (b) The abnormal magnet under magnetic field viewing film.

    图 7  (a) 模型A, B反常磁铁轴向磁感应强度的实验数据; (b) 模型B反常磁铁轴向磁感应强度. 蓝色圆点为实验测量结果, 红色直线为磁化电流模型计算结果

    Fig. 7.  (a) Experimental data of axial magnetic induction for abnormal magnets of type A and B; (b) the axial magnetic induction intensity of the abnormal magnet of type B. Blue circle denotes the experimental data whereas the red line denotes the theoretical results.

    图 8  (a) 在$ z = 3 \;{\rm{mm}} $平面上, 模型B反常磁铁的水平磁感应强度$ B_x(x) $, 红色圆点为实验测量结果, 蓝色直线为磁化电流模型计算结果; (b) 在$ z = 3 \;{\rm{mm}} $平面上, 模型A, B反常磁铁及正常磁铁的水平磁感应强度$ B_x(x) $的对比

    Fig. 8.  (a) The horizontal magnetic induction intensity $ B_x(x) $ of the abnormal magnet of type B at $ z = 3 \;{\rm{mm}} $. Red circle denotes the experimental data whereas the blue line denotes the theoretical results. (b) Comparison of horizontal magnetic induction intensity $ B_x(x) $ of the abnormal magnets of type A and B and a normal magnet with the same size at $ z = 3 \;{\rm{mm}} $.

    图 9  不同厚度小磁铁 (a)$ \Phi15\times10 $, $ \Phi15\times15 $$ \Phi15\times20 $以及(b)$ \Phi10\times10 $, $ \Phi10\times15 $$ \Phi10\times20 $接触反磁化大磁铁$ \Phi40\times2.5 $ 后得到的反常磁铁, 其沿$ z $轴的轴向磁感应强度$ B_z(z) $

    Fig. 9.  The axial magnetic induction $ B_z(z) $ of larger magnet $ \Phi40\times2.5 $ demagnetized by smaller magnets of different heights with (a)$ \Phi15\times10 $, $ \Phi15\times15 $, $ \Phi15\times20 $ and (b)$ \Phi10\times10 $, $ \Phi10\times15 $, $ \Phi10\times20 $.

    图 10  由小磁铁$\Phi15\times20$$\Phi15\times10$接触反磁化形成的反常磁铁C, D, 在远离磁铁表面$ z = 5 \;{\rm{mm}} $处二者磁感应强度的差值: (a)反常磁铁C与D的切向磁感应强度差值$ B_{\rm t} $; (b) 反常磁铁C与D的法向磁感应强度差值$ B_{\rm n} $; (c) 反常磁铁C与D的磁感应强度的绝对值的差值$ B_{\rm{abs}} $

    Fig. 10.  Abnormal magnets C, D are locally demagnetized by smaller magnets of size $\Phi 15\times20$ and $\Phi 15\times10$ at the center, the difference of magnetic induction between C and D at the plane $ 5 \;{\rm{mm}} $ away from the abnormal magnets' surface: (a) The tangential difference $ B_{t} $; (b) the axial difference $ B_{\rm n} $; (c) the difference of absolute value $ B_{\rm{abs}} $.

    表 1  A, B两组模型材料参数

    Table 1.  Material parameters of the two models

    组别 A B
    大磁铁尺寸/mm $\varPhi \;40\times2.5$ $\varPhi \;40\times2.5$
    小磁铁a尺寸/mm $\varPhi \;12\times18$ $\varPhi \;12\times18$
    小磁铁b尺寸/mm Null $\varPhi \; 6\times20$
    下载: 导出CSV

    表 2  小磁铁尺寸、磁化强度及相应反常磁铁指标

    Table 2.  The size and magnetization of small magnet and the indicators of corresponding abnormal magnet

    小磁铁尺寸/mm 小磁铁磁化强度/(A·m-1) 反常磁铁转变点位置/mm 反常磁铁的$B_{{\rm s}z}$/mT
    $\Phi15\times10$ $6.565\times10^5$ $7.5$ 9.9
    $\Phi 15\times15$ $6.614\times10^5$ $8.0$ 8.9
    $\Phi 15\times20$ $6.712\times10^5$ $8.2$ 3.4
    $\Phi 10\times10$ $6.103\times10^5$ $7.1$ –13.9
    $\Phi 10\times15$ $6.207\times10^5$ $8.0$ –18.8
    $\Phi 10\times20$ $6.365\times10^5$ $8.3$ –24.3
    下载: 导出CSV
  • [1]

    Coey J M D 2002 J. Magn. Magn. Mater. 248 3

    [2]

    Lu Z, Wang Z X, Zhou Y, Lu X L 2018 J. Sound Vib. 423 18Google Scholar

    [3]

    Fu H L, Theodossiades S, Gunn B, Abdallah I, Chatzi, E 2020 Nonlinear Dyn. 101 4

    [4]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601Google Scholar

    [5]

    Lai S K, Wang C, Zhang L H 2019 Mech. Syst. Signal Process 122 87Google Scholar

    [6]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [7]

    Schomburg W K, Reinertz O, Sackmann J, Schmitz K 2020 J. Magn. Magn. Mater. 506 166694Google Scholar

    [8]

    Peng Q L 2007 J. Magn. Magn. Mater. 309 1Google Scholar

    [9]

    Zhang Y Y, Leng Y G, Tan D, Liu J J 2018 J. Magn. 23 4

    [10]

    Caciagli A, Baars R J, Philipse A P, Kuipers B W 2018 J. Magn. Magn. Mater. 456 423Google Scholar

    [11]

    Zhang Y Y, Leng Y G, Liu J J, Tan D 2019 J. Magn. 24 3

    [12]

    Zhang Y Y, Leng Y G 2020 Int. J. Appl. Electromagn. Mech. 62 2

    [13]

    Ruoho S, Arkkio A 2008 IEEE Trans. Magn. 44 7

    [14]

    Campbell P 1996 Permanent Magnet Materials and Their Application (Cambridge, U.K.: Cambridge University Press) pp64–65

    [15]

    孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波 2020 物理学报 69 140502Google Scholar

    Sun S L, Leng Y G, Zhang Y Y, Su X K, Fan S B 2020 Acta Phys. Sin. 69 140502Google Scholar

    [16]

    Shin H S, Jang G H, Choi J Y 2020 AIP Adv. 10 1

    [17]

    Ponce E A, Leeb S B 2020 IEEE Trans. Magn. 56 3Google Scholar

    [18]

    O’Connell J L, Robertson W S, Cazzolato B S 2020 J. Magn. Magn. Mater. 510 166894Google Scholar

    [19]

    De Visschere P 2005 J. Phys. D: Appl. Phys. 38 3

    [20]

    Nguyen V T, Lu T F 2019 J. Magn. Magn. Mater. 491 165569Google Scholar

    [21]

    Landau L D, Lifschitz E M 1975 The Classical Theory of Fields (Vol. 2) (Oxford: Pergamon Press) pp89−108

    [22]

    Landau L D, Lifschitz E M 1984 Electrodynamics of Continuous Media (Vol. 8) (Oxford: Pergamon Press) pp105−113

  • [1] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [3] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究. 物理学报, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [4] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [5] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [6] 邓东阁, 左苏, 武新军. 基于表面磁感应强度的铁磁构件应力恒磁表征方法. 物理学报, 2018, 67(17): 178103. doi: 10.7498/aps.67.20180560
    [7] 高鹏飞, 刘铁, 柴少伟, 董蒙, 王强. 磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响. 物理学报, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [8] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量. 物理学报, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [9] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [10] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [11] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [12] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [13] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [14] 刘桂雄, 徐晨, 张沛强, 吴庭万. 永磁体在磁流体中的磁力学建模及自悬浮位置可控性. 物理学报, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [15] 张 然, 刘 颖, 高升吉, 谢 治, 涂铭旌. 添加Dy在快淬NdFeB永磁体中的作用. 物理学报, 2008, 57(1): 526-530. doi: 10.7498/aps.57.526
    [16] 张 然, 刘 颖, 李 军, 马毅龙, 高升吉, 涂铭旌. 添加Nb在快淬NdFeB永磁体中的作用研究. 物理学报, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [17] 成问好, 李卫, 李传健. Nb含量对烧结NbFeB永磁体磁性能及显微结构的影响. 物理学报, 2001, 50(1): 139-143. doi: 10.7498/aps.50.139
    [18] 卢云锦, 杨星水, 赵骥万, 王桂琴, 张世远, 刘长清. 添加剂(2Fe)·(Sn)对SmCo5永磁体X射线衍射相对强度I200/I111影响的研究. 物理学报, 1982, 31(4): 467-473. doi: 10.7498/aps.31.467
    [19] 盛谏. 永磁材料退磁曲线的几何作图法. 物理学报, 1978, 27(3): 331-338. doi: 10.7498/aps.27.331
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系. 物理学报, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  5949
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-06
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回