搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用永磁铁的钠原子二维磁光阱的设计和研究

李子亮 师振莲 王鹏军

引用本文:
Citation:

采用永磁铁的钠原子二维磁光阱的设计和研究

李子亮, 师振莲, 王鹏军

Design and research of two-dimensional magneto-optical trap of sodium atom using permanent magnets

Li Zi-Liang, Shi Zhen-Lian, Wang Peng-Jun
PDF
HTML
导出引用
  • 在空间尺度上简化冷原子实验装置, 有利于实验室空间的充分利用, 特别有助于提高冷原子系统在航天、精密测量领域中的空间利用率. 本文采用四组永磁铁产生的磁场构造了用于冷却俘获中性钠原子的二维磁光阱, 并且利用磁铁组在竖直方向的剩磁分布实现了原子的塞曼冷却. 钠原子在二维磁光阱中进一步冷却俘获, 这为处于高真空的三维磁光阱提供了一个高效的原子束流. 实验上通过优化塞曼冷却和二维磁光阱的参数, 测得三维磁光阱中最大的原子装载率达2.3 × 109/s, 实现了6.2 × 109个原子的俘获. 这种采用永磁铁的二维磁光阱设计, 结构简单紧凑, 有助于提高实验室的空间利用率. 此方案可以推广到冷却俘获其他中性原子.
    It is helpful to make full use of the laboratory space by simplifying the cold atom experimental system, especially in the area of aerospace and precision measurement. We present a two-dimensional magneto-optical trap (2DMOT) for sodium atoms, whose magnetic field is produced by four sets of permanent magnets, and the residual field in the vertical direction is used for a Zeeman slower. The atoms are cooled and trapped in a 2DMOT which provides a highly efficient atomic flux for three-dimensional magneto-optical trap (3DMOT) in a high-vacuum chamber. The maximum 3DMOT loading rate is measured to be 2.3 × 109/s by optimizing the parameters of the Zeeman slower and the 2DMOT. The atom number trapped in 3DMOT is 6.2 × 109. The 2DMOT designed by using permanent magnets has the property of compact structure and simple size, which can be used to cool and trap other neutral atoms.
      通信作者: 王鹏军, pengjun_wang@sxu.edu.cn
    • 基金项目: 国家级-国家重点基础研究发展计划(2016YFA0301602)
      Corresponding author: Wang Peng-Jun, pengjun_wang@sxu.edu.cn
    [1]

    Bloch I, Dalibard J, Nascimbene S 2012 Nat. Phys. 8 267Google Scholar

    [2]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [3]

    Zhang Z D, Yao K X, Feng L, Hu J Z, Chin C 2019 arXiv: 1909.05536 [quant-ph]

    [4]

    Jaksch D, Zoller P 2005 Ann. Phys. 315 52Google Scholar

    [5]

    Jo G B, Lee Y R, Choi J H, Christensen C A, Kim T H, Thywissen J H, Pritchard D E, Ketterle W 2009 Science 325 1521Google Scholar

    [6]

    Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A, Sen U 2007 Adv. Phys. 56 243Google Scholar

    [7]

    Ludlow A D, Boyd M M, Zelevinsky T, Foreman S M, Blatt S, Notcutt M, Ido T, Ye J 2006 Phys. Rev. Lett. 96 033003Google Scholar

    [8]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321Google Scholar

    [9]

    武跃龙, 李睿, 芮扬, 姜海峰, 武海斌 2018 物理学报 67 163201Google Scholar

    Wu Y L, Li R, Rui Y, Jiang H F, Wu H B 2018 Acta Phys. Sin. 67 163201Google Scholar

    [10]

    孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖 2015 物理学报 64 243202Google Scholar

    Meng Z M, Huang L H, Peng P, Chen L C, Fan H, Wang P J, Zhang J 2015 Acta Phys. Sin. 64 243202Google Scholar

    [11]

    Xu X T, Wang Z Y, Jiao R H, Yi C R, Sun W, Chen S 2019 Rev. Sci. Instrum. 90 054708Google Scholar

    [12]

    孙晓洁, 寇军, 张笑楠, 曹建勋, 邓意成, 卢向东 2018 量子光学学报 24 25Google Scholar

    Sun X J, Kou J, Zhang X N, Cao J X, Deng Y C, Lu X D 2018 Acta Sin. Quantum Opt. 24 25Google Scholar

    [13]

    Yang J L, Long Y, Gao W W, Jin L, Zuo Z C, Wang R Q 2018 Chin. Phys. Lett. 35 033701Google Scholar

    [14]

    Jiang J, Zhao L, Webb M, Jiang N, Yang H, Liu Y 2013 Phys. Rev. A 88 033620Google Scholar

    [15]

    Xu K, Liu Y, Abo-Shaeer J R, Mukaiyama T, Chin J K, Miller D E, Ketterle W, Jones K M, Tiesinga E 2005 Phys. Rev. A 72 043604Google Scholar

    [16]

    Hu J Z, Urvoy A, Vendeiro Z, Crépel V, Chen W L, Vuletić V 2017 Science 358 1078Google Scholar

    [17]

    Urvoy A, Vendeiro Z, Ramette J, Adiyatullin A, Vuletić V 2019 Phys. Rev. Lett. 122 203202Google Scholar

    [18]

    Barker D S, Norrgard E B, Klimov N N, Fedchak J A, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar

    [19]

    杨威, 孙大立, 周林, 王谨, 詹明生 2014 物理学报 63 153701Google Scholar

    Yang W, Sun D L, Zhou L, Wang J, Zhan M S 2014 Acta Phys. Sin. 63 153701Google Scholar

    [20]

    王心亮, 马结, 王靖斌, 田晓, 高峰, 张首刚, 常宏 2011 量子光学学报 17 124Google Scholar

    Wang X L, Ma J, Wang J B, Tian X, Gao F, Zhang S G, Chang H 2011 Acta Sin. Quantum Opt. 17 124Google Scholar

    [21]

    Youn S H, Lu M W, Ray U, Lev B L 2010 Phys. Rev. A 82 043425Google Scholar

    [22]

    Pandey K, Rathod K D, Singh A K, Natarajan V 2010 Phys. Rev. A 82 043429Google Scholar

    [23]

    Reinaudi G, Osborn C B, Bega K, Zelevinsky T 2012 J. Opt. Soc. Am. B 29 729Google Scholar

    [24]

    Ovchinnikov Y B 2008 Eur. Phys. J. Spec. Top. 163 95Google Scholar

    [25]

    Groth S, Krüger P, Wildermuth S, Folman R, Fernholz T, Schmiedmayer J 2004 Appl. Phys. Lett. 85 2980Google Scholar

    [26]

    Folman R, Krueger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263Google Scholar

    [27]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409Google Scholar

    [28]

    Lamporesi G, Donadello S, Serafini S, Ferrari G 2013 Rev. Sci. Instrum. 84 063102Google Scholar

    [29]

    Castilho1 P C M, Pedrozo-Peñafel E, Gutierrez E M, Mazo P L, Roati G, Farias K M, Bagnato V S 2019 Laser Phys. Lett. 16 035501Google Scholar

    [30]

    Nosske I, Couturier L, Hu F, Tan C Z, Qiao C, Blume J, Jiang Y H, Chen P, Weidemüller M 2017 Phys. Rev. A 96 053415Google Scholar

    [31]

    Li K, Zhang D F, Gao T Y, Peng S G, Jiang K J 2015 Phys. Rev. A 92 013419Google Scholar

    [32]

    Steck D A http://steck.us/alkalidata [2019-11-14]

    [33]

    任珂娜, 师振莲, 孟增明, 王鹏军 2018 山西大学学报 41 153

    Ren K N, Shi Z L, Meng Z M, Wang P J 2018 Journal of Shanxi University 41 153

    [34]

    王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) 第304页

    Wang Y Q 2007 The Atomic Laser Cools And Traps (Vol. 1) (Beijing: Peking University Press) p304 (in Chinese)

    [35]

    Townsend C G, Edwards N H, Cooper C J, Zetie K P, Foot C J, Steane A M, Szriftgiser P, Perrin H, Dalibard J 1995 Phys. Rev. A 52 1423Google Scholar

    [36]

    Marcassa L G, Helmersony K, Tuboy A M, Milori D M B P, Muniz S R, Flemming J, Z′ılio S C, Bagnato V S 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3051Google Scholar

    [37]

    Marcassa L, Bagnato V, Wang Y, Tsao C, Weiner J, Dulieu O, Band Y B, Julienne P S 1993 Phys. Rev. A 47 R4563Google Scholar

    [38]

    Telles G, Ishikawa T, Gibbs M, Raman C 2010 Phys. Rev. A 81 032710Google Scholar

  • 图 1  (a)真空系统示意图; (b)二维磁光阱的实验装置(插图为沿y轴观测到的原子团); (c) D2线钠原子的冷却方案

    Fig. 1.  (a) Diagram of the vacuum system; (b) schematic diagram of the two-dimensional magneto-optical trap (2DMOT), the insert shows the observed atoms along y axis; (c) sodium cooling scheme on the D2 line.

    图 2  (a)二维磁光阱的磁场分布模拟图; (b), (c), (d)分别是yz平面、xz平面、xy平面的磁场分布模拟图(图(b)中分别标出了沿着y轴和z轴磁场变化)

    Fig. 2.  (a) Magnetic field distribution in a two-dimensional magneto-optical trap; (b), (c), (d) are the magnetic field distribution in yz plane, xz plane and xy plane, (The curves in panel (b) shows the magnetic field change along y-axis and z-axis).

    图 3  打开和关闭塞曼减速光两种情形下的三维磁光阱中原子装载曲线

    Fig. 3.  Atom loading curves in three-dimensional magneto-optical trap (3DMOT) with and without the Zeeman slower beam.

    图 4  装载率L随二维磁光阱冷却光功率P (a)和频率失谐$\varDelta $ (b)的变化

    Fig. 4.  Loading rate versus the power P (a) and frequency detuning $\varDelta $ (b) of the cooling beams in two-dimensional magneto-optical trap.

    图 5  装载率L随塞曼光功率P (a)、频率失谐$\varDelta $ (b)和半波片旋转角(c)的变化

    Fig. 5.  Loading rate versus the power P (a), frequency detuning $\varDelta $ (b) and rotation angle of linear polarization (c) of Zeeman beam.

  • [1]

    Bloch I, Dalibard J, Nascimbene S 2012 Nat. Phys. 8 267Google Scholar

    [2]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [3]

    Zhang Z D, Yao K X, Feng L, Hu J Z, Chin C 2019 arXiv: 1909.05536 [quant-ph]

    [4]

    Jaksch D, Zoller P 2005 Ann. Phys. 315 52Google Scholar

    [5]

    Jo G B, Lee Y R, Choi J H, Christensen C A, Kim T H, Thywissen J H, Pritchard D E, Ketterle W 2009 Science 325 1521Google Scholar

    [6]

    Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A, Sen U 2007 Adv. Phys. 56 243Google Scholar

    [7]

    Ludlow A D, Boyd M M, Zelevinsky T, Foreman S M, Blatt S, Notcutt M, Ido T, Ye J 2006 Phys. Rev. Lett. 96 033003Google Scholar

    [8]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321Google Scholar

    [9]

    武跃龙, 李睿, 芮扬, 姜海峰, 武海斌 2018 物理学报 67 163201Google Scholar

    Wu Y L, Li R, Rui Y, Jiang H F, Wu H B 2018 Acta Phys. Sin. 67 163201Google Scholar

    [10]

    孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖 2015 物理学报 64 243202Google Scholar

    Meng Z M, Huang L H, Peng P, Chen L C, Fan H, Wang P J, Zhang J 2015 Acta Phys. Sin. 64 243202Google Scholar

    [11]

    Xu X T, Wang Z Y, Jiao R H, Yi C R, Sun W, Chen S 2019 Rev. Sci. Instrum. 90 054708Google Scholar

    [12]

    孙晓洁, 寇军, 张笑楠, 曹建勋, 邓意成, 卢向东 2018 量子光学学报 24 25Google Scholar

    Sun X J, Kou J, Zhang X N, Cao J X, Deng Y C, Lu X D 2018 Acta Sin. Quantum Opt. 24 25Google Scholar

    [13]

    Yang J L, Long Y, Gao W W, Jin L, Zuo Z C, Wang R Q 2018 Chin. Phys. Lett. 35 033701Google Scholar

    [14]

    Jiang J, Zhao L, Webb M, Jiang N, Yang H, Liu Y 2013 Phys. Rev. A 88 033620Google Scholar

    [15]

    Xu K, Liu Y, Abo-Shaeer J R, Mukaiyama T, Chin J K, Miller D E, Ketterle W, Jones K M, Tiesinga E 2005 Phys. Rev. A 72 043604Google Scholar

    [16]

    Hu J Z, Urvoy A, Vendeiro Z, Crépel V, Chen W L, Vuletić V 2017 Science 358 1078Google Scholar

    [17]

    Urvoy A, Vendeiro Z, Ramette J, Adiyatullin A, Vuletić V 2019 Phys. Rev. Lett. 122 203202Google Scholar

    [18]

    Barker D S, Norrgard E B, Klimov N N, Fedchak J A, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar

    [19]

    杨威, 孙大立, 周林, 王谨, 詹明生 2014 物理学报 63 153701Google Scholar

    Yang W, Sun D L, Zhou L, Wang J, Zhan M S 2014 Acta Phys. Sin. 63 153701Google Scholar

    [20]

    王心亮, 马结, 王靖斌, 田晓, 高峰, 张首刚, 常宏 2011 量子光学学报 17 124Google Scholar

    Wang X L, Ma J, Wang J B, Tian X, Gao F, Zhang S G, Chang H 2011 Acta Sin. Quantum Opt. 17 124Google Scholar

    [21]

    Youn S H, Lu M W, Ray U, Lev B L 2010 Phys. Rev. A 82 043425Google Scholar

    [22]

    Pandey K, Rathod K D, Singh A K, Natarajan V 2010 Phys. Rev. A 82 043429Google Scholar

    [23]

    Reinaudi G, Osborn C B, Bega K, Zelevinsky T 2012 J. Opt. Soc. Am. B 29 729Google Scholar

    [24]

    Ovchinnikov Y B 2008 Eur. Phys. J. Spec. Top. 163 95Google Scholar

    [25]

    Groth S, Krüger P, Wildermuth S, Folman R, Fernholz T, Schmiedmayer J 2004 Appl. Phys. Lett. 85 2980Google Scholar

    [26]

    Folman R, Krueger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263Google Scholar

    [27]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409Google Scholar

    [28]

    Lamporesi G, Donadello S, Serafini S, Ferrari G 2013 Rev. Sci. Instrum. 84 063102Google Scholar

    [29]

    Castilho1 P C M, Pedrozo-Peñafel E, Gutierrez E M, Mazo P L, Roati G, Farias K M, Bagnato V S 2019 Laser Phys. Lett. 16 035501Google Scholar

    [30]

    Nosske I, Couturier L, Hu F, Tan C Z, Qiao C, Blume J, Jiang Y H, Chen P, Weidemüller M 2017 Phys. Rev. A 96 053415Google Scholar

    [31]

    Li K, Zhang D F, Gao T Y, Peng S G, Jiang K J 2015 Phys. Rev. A 92 013419Google Scholar

    [32]

    Steck D A http://steck.us/alkalidata [2019-11-14]

    [33]

    任珂娜, 师振莲, 孟增明, 王鹏军 2018 山西大学学报 41 153

    Ren K N, Shi Z L, Meng Z M, Wang P J 2018 Journal of Shanxi University 41 153

    [34]

    王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) 第304页

    Wang Y Q 2007 The Atomic Laser Cools And Traps (Vol. 1) (Beijing: Peking University Press) p304 (in Chinese)

    [35]

    Townsend C G, Edwards N H, Cooper C J, Zetie K P, Foot C J, Steane A M, Szriftgiser P, Perrin H, Dalibard J 1995 Phys. Rev. A 52 1423Google Scholar

    [36]

    Marcassa L G, Helmersony K, Tuboy A M, Milori D M B P, Muniz S R, Flemming J, Z′ılio S C, Bagnato V S 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3051Google Scholar

    [37]

    Marcassa L, Bagnato V, Wang Y, Tsao C, Weiner J, Dulieu O, Band Y B, Julienne P S 1993 Phys. Rev. A 47 R4563Google Scholar

    [38]

    Telles G, Ishikawa T, Gibbs M, Raman C 2010 Phys. Rev. A 81 032710Google Scholar

  • [1] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析. 物理学报, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备. 物理学报, 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [3] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [4] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [5] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究. 物理学报, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [6] 万明杰, 罗华锋, 袁娣, 李松. 激光冷却KCl阴离子的理论研究. 物理学报, 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [7] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术. 物理学报, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [8] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [9] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [10] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 物理学报, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [11] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究. 物理学报, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [12] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量. 物理学报, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [13] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化. 物理学报, 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [14] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [15] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [16] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [17] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [18] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [19] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [20] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用. 物理学报, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
计量
  • 文章访问数:  8312
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-23
  • 修回日期:  2020-04-06
  • 刊出日期:  2020-06-20

/

返回文章
返回