搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光栅周期包含的Bragg层数对Bragg型凹面衍射光栅的影响

杜炳政 朱京平 毛玉政 刘宏 王凯 侯洵

引用本文:
Citation:

光栅周期包含的Bragg层数对Bragg型凹面衍射光栅的影响

杜炳政, 朱京平, 毛玉政, 刘宏, 王凯, 侯洵

Effects of Bragg periods per grating period on performance of Bragg concave diffraction grating

Du Bing-Zheng, Zhu Jing-Ping, Mao Yu-Zheng, Liu Hong, Wang Kai, Hou Xun
PDF
导出引用
  • 单个衍射光栅周期所包含的Bragg周期层数是连续Bragg齿型凹面衍射光栅的主要参数之一,该参数可改变光栅齿结构,对凹面衍射光栅的分辨力.自由光谱范围及衍射效率有重要影响.本文通过理论分析与仿真模拟,对比了4种不同层数的Bragg型凹面衍射光栅的特性参数.研究结果表明:在衍射光栅尺寸不变的情况下,改变单个光栅周期包含的Bragg周期层数不会显著提高器件主衍射级次的分辨力;单个光栅周期包含的Bragg周期层数与光栅可衍射的级次数成正相关.单周期层数的Bragg凹面衍射光栅的主衍射级次效率最高,其可衍射的级次数最少,且其他衍射级次分散的能量最少;增加单个光栅周期所包含的Bragg周期层数会降低主衍射级次的自由光谱范围.该研究对于设计低插损、高分辨率、宽工作波段的波分复用器或光栅光谱仪具有重要的指导意义.
    Concave diffraction gratings (CDGs) have the advantages of being compact, time reliability, cost effective, and channel spacing accuracy. These devices can be used in the wavelength division multiplexing (WDM) systems and micro-spectrometer devices. However, comparing with arrayed waveguides gratings (AWGs), the development of traditional CDGs is far from satisfactory. Because the traditional CDGs need deeply etched facets and perfect grating profiles to reduce the insertion losses, which will increase the difficulty in etching process. In order to solve this problem, Bragg reflectors based CDGs (Bragg-CDGs) are proposed. This structure can greatly reduce the insertion loss, and reduce the difficulty in etching process. The performance of the Bragg-CDG is determined by both the reflection condition of the Bragg reflectors and the diffraction condition of the CDG. With the Bragg reflection condition determined, the diffraction condition of Bragg-CDG will have a major influence on the performance of device. For successive strips based Bragg-CDG, the number of Bragg periods per diffraction grating period is an important parameter of Bragg-CDG. The diffraction condition of concave gratings is closely related to this parameter. This parameter has an effect on the performance of Bragg-CDG, specially termed resolution, the free spectrum range, and the diffraction efficiency. The effect of the number of Bragg periods per diffraction grating period on the Bragg diffraction grating is studied by theoretical analysis. In addition, four Bragg-CDGs with different numbers of Bragg periods are studied using the finite-difference time domain method. The results show that with sizes of diffraction gratings fixed, the resolution of Bragg-CDG does not have a significant improvement by changing the number of Bragg periods per diffraction grating period; the total number of diffraction orders is proportional to the number of Bragg periods per diffraction grating period. The Bragg-CDG with a single Bragg period per grating period has a maximum diffraction efficiency, since it has the minimal number of diffraction orders; in addition, with the increase of the number of Bragg periods per diffraction grating period, the free spectrum range of the main diffraction order gradually decreases. This research can contribute to the development of the demultiplexer with the low insertion loss, the high resolution, and the wide operating waveband.
      通信作者: 朱京平, jpzhu@xjtu.edu.cn
    • 基金项目: 江苏省科技支撑计划(批准号:BE2016133)资助的课题.
      Corresponding author: Zhu Jing-Ping, jpzhu@xjtu.edu.cn
    • Funds: Project supported by the Key Research and Development Plan of Jiangsu Province, China (Grant No. BE2016133).
    [1]

    Yebo N A, Bogaerts W, Hens Z, Baets R 2011 IEEE Photon. Technol. Lett. 23 1505

    [2]

    Estevez M, Alvarez M, Lechuga L 2012 Laser Photon. Rev. 6 463

    [3]

    de Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R 2007 Opt. Express 15 7610

    [4]

    Lam C F 2011 Passive Optical Networks: Principles and Practice (London: Academic Press) pp71-73

    [5]

    McGreer K A 1998 IEEE Commun. Mag. 36 62

    [6]

    Hill K O, Meltz G 1997 IEEE J. Lightwave Tech. 15 1263

    [7]

    Gerken M, Miller D A B 2003 IEEE Photon. Technol. Lett. 15 1097

    [8]

    Horst F, Green W M, Assefa S, Shank S M, Vlasov Y A, Offrein B J 2013 Opt. Express 21 11652

    [9]

    Smit M K, van Dam C 1996 IEEE J. Sel. Top. Quantum Electron. 2 236

    [10]

    Li K L, An J M, Zhang J S, et al. 2016 Chin. Phys. B 25 124209

    [11]

    Koteles E S 1999 Fiber Integr. Opt. 18 211

    [12]

    Pathak S, Dumon P, van Thourhout D, Bogaerts W 2014 IEEE Photon. J. 6 1

    [13]

    He J J, Lamontagne B, Delge A, Erickson L, Davies M, Koteles E S 1998 IEEE J. Lightwave Tech. 16 631

    [14]

    Erickson L, Lamontagne B, He J J, Delage A, Davies M, Koteles E 1997 Advanced Semiconductor Lasers and Applications Montreal, Canada, August 11-13, 1997 p82

    [15]

    Brouckaert J, Bogaerts W, Dumon P, van Thourhout D, Baets R 2007 IEEE J. Lightwave Tech. 25 1269

    [16]

    Song J, He S 2004 J. Opt. A: Pure Appl. Opt. 6 769

    [17]

    Brouckaert J, Bogaerts W, Selvaraja S, Dumon P, Baets R, van Thourhout D 2008 IEEE Photon. Technol. Lett. 20 309

    [18]

    Jafari A, Kirk A G 2011 IEEE Photon. J. 3 651

    [19]

    Pottier P, Packirisamy M 2012 IEEE J. Lightwave Tech. 30 2922

    [20]

    Li B, Zhu J P, Du B Z (in Chinese) [ 李宝, 朱京平, 杜炳政 2014 物理学报 63 194209]

    [21]

    Du B, Zhu J, Mao Y, Li B, Zhang Y, Hou X 2017 Opt. Commun. 385 92

    [22]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese) [王辉, 李永平 2001 物理学报 50 2172]

    [23]

    Fink Y 1998 Science 282 1679

    [24]

    Li R, Ren K, Ren X B, Zhou J, Liu D H 2004 Acta Phys. Sin. 53 2520 (in Chinese) [李蓉, 任坤, 任晓斌, 周静, 刘大禾 2004 物理学报 53 2520]

    [25]

    Hutley M C 1982 Diffraction Gragting (Techniques of Physics: 6) (London: Academic Press) pp215-221

  • [1]

    Yebo N A, Bogaerts W, Hens Z, Baets R 2011 IEEE Photon. Technol. Lett. 23 1505

    [2]

    Estevez M, Alvarez M, Lechuga L 2012 Laser Photon. Rev. 6 463

    [3]

    de Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R 2007 Opt. Express 15 7610

    [4]

    Lam C F 2011 Passive Optical Networks: Principles and Practice (London: Academic Press) pp71-73

    [5]

    McGreer K A 1998 IEEE Commun. Mag. 36 62

    [6]

    Hill K O, Meltz G 1997 IEEE J. Lightwave Tech. 15 1263

    [7]

    Gerken M, Miller D A B 2003 IEEE Photon. Technol. Lett. 15 1097

    [8]

    Horst F, Green W M, Assefa S, Shank S M, Vlasov Y A, Offrein B J 2013 Opt. Express 21 11652

    [9]

    Smit M K, van Dam C 1996 IEEE J. Sel. Top. Quantum Electron. 2 236

    [10]

    Li K L, An J M, Zhang J S, et al. 2016 Chin. Phys. B 25 124209

    [11]

    Koteles E S 1999 Fiber Integr. Opt. 18 211

    [12]

    Pathak S, Dumon P, van Thourhout D, Bogaerts W 2014 IEEE Photon. J. 6 1

    [13]

    He J J, Lamontagne B, Delge A, Erickson L, Davies M, Koteles E S 1998 IEEE J. Lightwave Tech. 16 631

    [14]

    Erickson L, Lamontagne B, He J J, Delage A, Davies M, Koteles E 1997 Advanced Semiconductor Lasers and Applications Montreal, Canada, August 11-13, 1997 p82

    [15]

    Brouckaert J, Bogaerts W, Dumon P, van Thourhout D, Baets R 2007 IEEE J. Lightwave Tech. 25 1269

    [16]

    Song J, He S 2004 J. Opt. A: Pure Appl. Opt. 6 769

    [17]

    Brouckaert J, Bogaerts W, Selvaraja S, Dumon P, Baets R, van Thourhout D 2008 IEEE Photon. Technol. Lett. 20 309

    [18]

    Jafari A, Kirk A G 2011 IEEE Photon. J. 3 651

    [19]

    Pottier P, Packirisamy M 2012 IEEE J. Lightwave Tech. 30 2922

    [20]

    Li B, Zhu J P, Du B Z (in Chinese) [ 李宝, 朱京平, 杜炳政 2014 物理学报 63 194209]

    [21]

    Du B, Zhu J, Mao Y, Li B, Zhang Y, Hou X 2017 Opt. Commun. 385 92

    [22]

    Wang H, Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese) [王辉, 李永平 2001 物理学报 50 2172]

    [23]

    Fink Y 1998 Science 282 1679

    [24]

    Li R, Ren K, Ren X B, Zhou J, Liu D H 2004 Acta Phys. Sin. 53 2520 (in Chinese) [李蓉, 任坤, 任晓斌, 周静, 刘大禾 2004 物理学报 53 2520]

    [25]

    Hutley M C 1982 Diffraction Gragting (Techniques of Physics: 6) (London: Academic Press) pp215-221

  • [1] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [2] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅. 物理学报, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [3] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [4] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [5] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析. 物理学报, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [6] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [7] 李宝, 杜炳政, 朱京平. Bragg反射齿型平面凹面衍射光栅性能研究. 物理学报, 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [8] 张佳, 徐旭明, 何灵娟, 于天宝, 郭浩. 基于光子晶体共振耦合的四波长波分复用/解复用器. 物理学报, 2012, 61(5): 054213. doi: 10.7498/aps.61.054213
    [9] 叶涛, 徐旭明. 高效异质结构四波长波分复用器的设计与优化. 物理学报, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [10] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用. 物理学报, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [11] 刘 丹, 马仁敏, 王菲菲, 张增星, 张振生, 张学进, 王 笑, 白永强, 朱 星, 戴 伦, 章 蓓. 纳米集成光路中的光源、光波导和光增强. 物理学报, 2008, 57(1): 371-381. doi: 10.7498/aps.57.371
    [12] 李齐良, 孙丽丽, 陈均朗, 李庆山, 唐向宏, 钱 胜, 林理彬. 周期色散管理波分复用系统中交叉相位调制边带不稳定性理论分析. 物理学报, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [13] 李齐良, 朱海东, 李院民, 唐向宏, 林理彬. 集总式放大波分复用链路中交叉相位调制的边带不稳定性. 物理学报, 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [14] 谭中伟, 郑 凯, 刘 艳, 傅永军, 陈 勇, 曹继红, 宁提纲, 董小伟, 马丽娜, 简水生. 基于啁啾光纤光栅的色散补偿器在超长距离密集波分复用系统中的应用. 物理学报, 2005, 54(11): 5218-5223. doi: 10.7498/aps.54.5218
    [15] 秦小芸, 黄弼勤, 陈海星, 杨立功, 顾培夫. 多周期双啁啾镜结构的空间解波分复用器. 物理学报, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [16] 周传宏, 王磊, 聂娅, 王植恒. 介质光栅导模共振耦合波分析. 物理学报, 2002, 51(1): 68-73. doi: 10.7498/aps.51.68
    [17] 巩稼民, 刘 娟, 方 强, 王永昌. 密集波分复用石英光纤通信系统中受激Raman散射的稳态分析模型. 物理学报, 2000, 49(7): 1287-1291. doi: 10.7498/aps.49.1287
    [18] 巩稼民, 方强, 刘娟, 王永昌. 密集波分复用石英光纤中受激喇曼散射对信号光的影响. 物理学报, 2000, 49(3): 449-454. doi: 10.7498/aps.49.449
    [19] 吴小萍, 范朝阳, 周文. 杨-顾算法在波分复用器中的应用. 物理学报, 1997, 46(9): 1751-1757. doi: 10.7498/aps.46.1751
    [20] 姜亚光, 宋从龙. 全息凹面光栅单色仪. 物理学报, 1980, 29(1): 111-116. doi: 10.7498/aps.29.111
计量
  • 文章访问数:  5935
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-05
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-11-05

/

返回文章
返回