搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联混沌及其动力学特性研究

王光义 袁方

引用本文:
Citation:

级联混沌及其动力学特性研究

王光义, 袁方

Cascade chaos and its dynamic characteristics

Wang Guang-Yi, Yuan Fang
PDF
导出引用
  • 初值敏感性是混沌的本质,混沌的随机性来源于其对初始条件的高度敏感性, 而Lyapunov指数又是这种初值敏感性的一种度量.本文的研究发现, 混沌系统的级联可明显提高级联混沌的Lyapunov指数,改善其动力学特性. 因此,本文研究了混沌系统的级联和级联混沌对动力学特性的影响, 提出了混沌系统级联的定义及条件,从理论上证明了级联混沌的Lyapunov指数为 各个级联子系统Lyapunov指数之和;适当的级联可增加系统参数、扩展混沌映射和满映射的参数区间, 由此可提高混沌映射的初值敏感性和混沌伪随机序列的安全性. 以Logistic映射、Cubic映射和Tent映射为例,研究了Logistic-Logistic级联、 Logistic-Cubic级联和Logistic-Tent级联的动力学特性,验证了级联混沌动力学性能的改善. 级联混沌可作为伪随机数发生器的随机信号源,用以产生初值敏感性更高、安全性更好的伪随机序列.
    The dependence of sensitivity on initial conditions is the essence of chaos. And the randomness of chaos originates from the high sensitivity to initial values, which is measured by the Lyapunov exponents. It is found in this paper that the cascade of chaotic systems can considerably improve the Lyapunov exponents of cascade chaos and other dynamic properties. Therefore, in this paper, we study the cascade of chaotic systems and the influence on dynamic performances of the cascade chaos, and we present the definition and conditions of chaotic system cascade. It is proved in theory that the Lyapunov exponent of cascade chaos system is a sum of Lyapunov exponents of cascade subsystems. Appropriate cascade for chaotic systems can increase system parameters and expand parameter regions of chaos mapping and full mapping, thereby enhancing initial condition sensitivity of chaotic map and security of chaotic pseudo-random sequences. For logistic map, cubic map and tent map, the dynamic characteristics of logistic-logistic, logistic-cubic and logistic-tent cascade are investigated in detail, verifying the improvements on dynamic characteristics of cascade chaos systems. The proposed chaotic cascade system can be used to generate better pseudo-random sequences for initial condition sensitivity and security.
    • 基金项目: 国家自然科学基金(批准号: 60971046)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60971046).
    [1]

    Lorenz E N 1993 The Essence of Chaos (Washington: The University of Washington Press) p25

    [2]

    Persohn K J, Povinelli R J 2012 Chaos, Solitons & Fractals 45 238

    [3]

    Chen S L, Hwang T T, Lin W W 2010 IEEE Trans. Circ. Syst.-II: Express Briefs 57 996

    [4]

    Jongsig Bae, Changha Hwang, Doobae Jun 2012 Statistics and Probability Letters 82 1021

    [5]

    Maier M P S, Peacock-López E 2010 Physics Letters A 374 1028

    [6]

    Sun K H, He S B, Yin L Z, A Di Li D L K 2012 Acta Phys. Sin. 61 130507 (in Chinese) [孙克辉, 贺少波, 尹林子, 阿地力·多力坤 2012 物理学报 61 130507]

    [7]

    Narendra Singh, Aloka Sinha 2010 Optics and Lasers in Engineering 48 398

    [8]

    Martínez-Ñonthe J A, Castañeda-Solís A, Díaz-Méndez A, Cruz-Irisson M, Vázquez-Medina R 2012 Microelectronic Engineering 90 168

    [9]

    Jovic B, Unsworth C P 2010 Electronics Letters 46 1

    [10]

    Feng C F, Xu X J, Wu Z X Wang Y H 2008 Chinese Physics B 17 1674

    [11]

    Young R M B, Read P L 2008 Physica D 237 2251

    [12]

    Thomas Curtright, Andrzej Veitia 2011 Physics Letters A 375 276

    [13]

    Levinsohn E A, Mendoza S A, Peacock-López E 2012 Chaos, Solitons & Fractals 45 426

    [14]

    Wang X Y, Wang M J 2008 Acta Phys. Sin. 57 731 [王兴元, 王明军 2008 物理学报 57 731]

    [15]

    Meng J D, Bao B C, Xu Q 2011 Acta Phys. Sin. 60 10504 [孟继德, 包伯成, 徐强 2011 物理学报 60 10504]

    [16]

    Wang G Y, Yu J B, Gu T X 2011 Acta Phys. Sin. 50 2307 [王改云, 虞厥邦, 古天祥 2001 物理学报 50 2307]

    [17]

    Bao B C, Kang Z S, Xu J P 2009 Acta Phys. Sin. 58 1420 [包伯成, 康祝圣, 许建平, 胡文 2009 物理学报 58 1420]

    [18]

    Wei Y, Nan J, Tang G 2011 Czechoslovak Mathematical Journal 61 1023

    [19]

    Ben Futter, Viktor Avrutin, Michael Schanz 2012 Chaos, Solitons & Fractals 45 465

  • [1]

    Lorenz E N 1993 The Essence of Chaos (Washington: The University of Washington Press) p25

    [2]

    Persohn K J, Povinelli R J 2012 Chaos, Solitons & Fractals 45 238

    [3]

    Chen S L, Hwang T T, Lin W W 2010 IEEE Trans. Circ. Syst.-II: Express Briefs 57 996

    [4]

    Jongsig Bae, Changha Hwang, Doobae Jun 2012 Statistics and Probability Letters 82 1021

    [5]

    Maier M P S, Peacock-López E 2010 Physics Letters A 374 1028

    [6]

    Sun K H, He S B, Yin L Z, A Di Li D L K 2012 Acta Phys. Sin. 61 130507 (in Chinese) [孙克辉, 贺少波, 尹林子, 阿地力·多力坤 2012 物理学报 61 130507]

    [7]

    Narendra Singh, Aloka Sinha 2010 Optics and Lasers in Engineering 48 398

    [8]

    Martínez-Ñonthe J A, Castañeda-Solís A, Díaz-Méndez A, Cruz-Irisson M, Vázquez-Medina R 2012 Microelectronic Engineering 90 168

    [9]

    Jovic B, Unsworth C P 2010 Electronics Letters 46 1

    [10]

    Feng C F, Xu X J, Wu Z X Wang Y H 2008 Chinese Physics B 17 1674

    [11]

    Young R M B, Read P L 2008 Physica D 237 2251

    [12]

    Thomas Curtright, Andrzej Veitia 2011 Physics Letters A 375 276

    [13]

    Levinsohn E A, Mendoza S A, Peacock-López E 2012 Chaos, Solitons & Fractals 45 426

    [14]

    Wang X Y, Wang M J 2008 Acta Phys. Sin. 57 731 [王兴元, 王明军 2008 物理学报 57 731]

    [15]

    Meng J D, Bao B C, Xu Q 2011 Acta Phys. Sin. 60 10504 [孟继德, 包伯成, 徐强 2011 物理学报 60 10504]

    [16]

    Wang G Y, Yu J B, Gu T X 2011 Acta Phys. Sin. 50 2307 [王改云, 虞厥邦, 古天祥 2001 物理学报 50 2307]

    [17]

    Bao B C, Kang Z S, Xu J P 2009 Acta Phys. Sin. 58 1420 [包伯成, 康祝圣, 许建平, 胡文 2009 物理学报 58 1420]

    [18]

    Wei Y, Nan J, Tang G 2011 Czechoslovak Mathematical Journal 61 1023

    [19]

    Ben Futter, Viktor Avrutin, Michael Schanz 2012 Chaos, Solitons & Fractals 45 465

  • [1] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究. 物理学报, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [3] 李先锐, 朱彦丽. DC-DC变换器的信息熵分析. 物理学报, 2014, 63(23): 238401. doi: 10.7498/aps.63.238401
    [4] 陈云龙, 伍歆. 力梯度辛方法在圆型限制性三体问题中的应用 . 物理学报, 2013, 62(14): 140501. doi: 10.7498/aps.62.140501
    [5] 臧鸿雁, 范修斌, 闵乐泉, 韩丹丹. S-盒的Lyapunov指数研究. 物理学报, 2012, 61(20): 200508. doi: 10.7498/aps.61.200508
    [6] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [7] 冯朝文, 蔡理, 康强, 彭卫东, 柏鹏, 王甲富. 基于单电子晶体管 - 金属氧化物场效应晶体管电路的离散混沌系统实现. 物理学报, 2011, 60(11): 110502. doi: 10.7498/aps.60.110502
    [8] 邹建龙, 马西奎. 级联功率因数校正变换器的级间耦合非线性动力学行为分析. 物理学报, 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [9] 牛超, 李夕海, 刘代志. 地球变化磁场Z分量的混沌动力学特性分析. 物理学报, 2010, 59(5): 3077-3087. doi: 10.7498/aps.59.3077
    [10] 许喆, 刘崇新, 杨韬. 一种新型混沌系统的分析及电路实现. 物理学报, 2010, 59(1): 131-139. doi: 10.7498/aps.59.131
    [11] 张晓丹, 刘翔, 赵品栋. 一类延迟混沌系统沿主轴方向上Lyapunov指数的计算方法. 物理学报, 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [12] 张勇, 关伟. 基于最大Lyapunov指数的多变量混沌时间序列预测. 物理学报, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [13] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [14] 刘金海, 张化光, 冯 健. 输油管道压力时间序列混沌特性研究. 物理学报, 2008, 57(11): 6868-6877. doi: 10.7498/aps.57.6868
    [15] 盛利元, 孙克辉, 李传兵. 基于切延迟的椭圆反射腔离散混沌系统及其性能研究. 物理学报, 2004, 53(9): 2871-2876. doi: 10.7498/aps.53.2871
    [16] 李成仁, 宋昌烈, 饶文雄, 李淑凤. 两片掺铒玻璃样品级联荧光光谱的实验研究. 物理学报, 2003, 52(3): 751-755. doi: 10.7498/aps.52.751
    [17] 王改云, 虞厥邦, 古天祥. 控制离散映射系统混沌的一种方法. 物理学报, 2001, 50(12): 2307-2310. doi: 10.7498/aps.50.2307
    [18] 刘雪明, 张明德, 孙小菡, 刘琳. 一种基于二阶非线性级联的新颖全光开关. 物理学报, 2001, 50(2): 287-292. doi: 10.7498/aps.50.287
    [19] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析. 物理学报, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
    [20] 李国辉, 周世平, 徐得名, 赖建文. 间隙线性反馈控制混沌. 物理学报, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
计量
  • 文章访问数:  3398
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-21
  • 修回日期:  2012-08-18
  • 刊出日期:  2013-01-05

级联混沌及其动力学特性研究

  • 1. 杭州电子科技大学电子信息学院, 杭州 310018
    基金项目: 国家自然科学基金(批准号: 60971046)资助的课题.

摘要: 初值敏感性是混沌的本质,混沌的随机性来源于其对初始条件的高度敏感性, 而Lyapunov指数又是这种初值敏感性的一种度量.本文的研究发现, 混沌系统的级联可明显提高级联混沌的Lyapunov指数,改善其动力学特性. 因此,本文研究了混沌系统的级联和级联混沌对动力学特性的影响, 提出了混沌系统级联的定义及条件,从理论上证明了级联混沌的Lyapunov指数为 各个级联子系统Lyapunov指数之和;适当的级联可增加系统参数、扩展混沌映射和满映射的参数区间, 由此可提高混沌映射的初值敏感性和混沌伪随机序列的安全性. 以Logistic映射、Cubic映射和Tent映射为例,研究了Logistic-Logistic级联、 Logistic-Cubic级联和Logistic-Tent级联的动力学特性,验证了级联混沌动力学性能的改善. 级联混沌可作为伪随机数发生器的随机信号源,用以产生初值敏感性更高、安全性更好的伪随机序列.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回