搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

力梯度辛方法在圆型限制性三体问题中的应用

陈云龙 伍歆

引用本文:
Citation:

力梯度辛方法在圆型限制性三体问题中的应用

陈云龙, 伍歆

Application of force gradient symplectic integrators to the circular restricted three-body problem

Chen Yun-Long, Wu Xin
PDF
导出引用
  • 旋转坐标系下的圆型限制性三体问 题因含非惯性系所附加的影响部分使得动能不是动量的严格二次型, 可能导致力梯度辛积分算法的应用遇到困难. 从Lie算子运算出发, 严格论证了力梯度算子在这种情形下的物理意义 仍然像质心惯性坐标系下的圆型限制性三体问题那样是引力的梯度, 而不是引力与非惯性力所得合力的梯度, 表明了力梯度辛方法适合求解旋转坐标系下的圆型限制性三体问题. 通过应用四阶力梯度辛方法、最优化四阶力梯度辛方法和Forest-Ruth 辛方法分别求解该问题, 进行了数值对比研究, 结果显示最优化型力梯度算法能够取得最好精度. 还应用最优化型算法计算两邻近轨道的Lyapunov指数和快速Lyapunov指标, 确保高精度辛方法能够贯穿于这些混沌指标计算的全过程, 以便准确刻画此系统的动力学定性性质.
    The kinetic energy of the circular restricted three-body problem in a rotating frame is no longer a standard positive quadratic function of moment, owing to the additional part in the non-inertial rotating frame, which leads to a difficulty in using force gradient symplectic integrators. To address this problem, we show through the calculation of Lie operators that the force gradient operator on the system is still related to the gradient of the gravitational forces from the two main objects rather than that of the resultant force of both the gravitational forces and the non-inertial force exerted by the rotating frame, just as the force gradient operator on the circular restricted three-body problem in an inertial frame. Therefore, it is reasonable to use the gradient symplectic integrators for integrating the circular restricted three-body problem in the rotating frame from a theoretical point of view. Numerical simulations describe that a fourth-order force gradient symplectic method is always greatly superior to the non-gradient Forest-Ruth algorithm in the numerical accuracy, and its optimized version is best. Because of this, the optimized gradient scheme is recommended for calculating chaos indicators, such as Lyapunov exponents of and fast Lyapunov indicators of two nearby trajectories, which is conductive to obtaining a true description of dynamically qualitative properties.
    • 基金项目: 国家自然科学基金(批准号: 11173012, 11178002)和南昌大学创新团队项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11173012, 11178002) and the Program for Innovative Research Team of Nanchang University, China.
    [1]

    Feng K, Qin M Z 2009 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science and Technology Publishing House)

    [2]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [3]

    Mei L J, Wu X, Liu F Y 2012 Chin. Phys. Lett. 29 050201

    [4]

    Hairer E, Lubich C, Wanner G 1999 Geometric Numerical Integration. (Berlin: Springer)

    [5]

    Chi Y H, Liu X S, Ding P Z 2006 Acta Phys. Sin. 55 6320 (in Chinese) [匙玉华, 刘学深, 丁培柱 2006 物理学报 55 6320]

    [6]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys. Sin. 56 604 (in Chinese) [罗香怡, 刘学深, 丁培柱 2007 物理学报 56 604]

    [7]

    Liu X S, Wei J Y, Ding P Z 2005 Chin. Phys. 14 231

    [8]

    Bian X B, Qiao H X, Shi T Y 2007 Chin. Phys. 16 1822

    [9]

    Cao Y, Yang K Q 2003 Acta Phys. Sin. 52 1984 (in Chinese) [曹禹, 杨孔庆 2003 物理学报 52 1984]

    [10]

    Hu W P, Deng Z C 2008 Chin. Phys. B 17 3923

    [11]

    Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040

    [12]

    Zhong S Y, Wu X 2011 Acta Phys. Sin. 60 090402 (in Chinese) [钟双英, 伍歆 2011 物理学报 60 090402]

    [13]

    Zhong S Y, Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 物理学报 61 120401]

    [14]

    Wu X, Zhong S Y 2011 Gen. Relat. Gravit. 43 2185

    [15]

    Ruth R D 1983 IEEE Tran. Nucl. Sci. 30 2669

    [16]

    Preto M, Saha P 2009 Astrophy. J. 703 1743

    [17]

    Liao X H 1997 Celest. Mech. Dyn. Astron. 66 243

    [18]

    Lubich C, Walther B, Braugmann B 2010 Phys. Rev. D 81 104025

    [19]

    Forest E, Ruth R D 1990 Physica D 43 105

    [20]

    Yoshida H 1990 Phys. Lett. A 150 262

    [21]

    Wisdom J, Holman M 1991 Astron. J. 102 1528

    [22]

    Preto M, Tremaine S 1999 Astron. J. 118 2532

    [23]

    Laskar J, Robutel P 2001 Celest. Mech. Dyn. Astron. 80 39

    [24]

    Wisdom J, Holman M, Touma J 1996 Fields Inst. Commun. 10 217

    [25]

    Chin S A 1997 Phys. Lett. A 75 226

    [26]

    Chin S A, Chen C R 2005 Celest. Mech. Dyn. Astron. 91 301

    [27]

    Chin S A 2007 Phys. Rev. E 75 036701

    [28]

    Xu J, Wu X 2010 Res. Astron. Astrophys. 10 173

    [29]

    Sun W, Wu X, Huang G Q 2011 Res. Astron. Astrophys. 11 353

    [30]

    Li R, Wu X 2010 Science China: Physics, Mechanics & Astronomy 53 1600

    [31]

    Omelyan I P, Mryglod I M, Folk R 2003 Comput. Phys. Commun. 151 272

    [32]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李荣,伍歆 2010 物理学报 59 7135]

    [33]

    Wu X, Huang T Y 2003 Phys. Lett. A 313 77

    [34]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

    [35]

    Murray C D, Dermott S F 1999 Solar System Dynamics (Cambridge, UK: Cambridge Univ. Press)

    [36]

    Tancredi G, Sánchez A, Roig F 2001 Astron. J. 121 1171

    [37]

    Froeschlé C, Lega E 2000 Celest. Mech. Dyn. Astron. 78 167

    [38]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [39]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [40]

    Wang Y Z, Wu X, Zhong S Y 2012 Acta Phys. Sin. 61 160401 (in Chinese) [王玉诏, 伍歆, 钟双英 2012 物理学报 61 160401]

  • [1]

    Feng K, Qin M Z 2009 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science and Technology Publishing House)

    [2]

    Zhong S Y, Wu X 2010 Phys. Rev. D 81 104037

    [3]

    Mei L J, Wu X, Liu F Y 2012 Chin. Phys. Lett. 29 050201

    [4]

    Hairer E, Lubich C, Wanner G 1999 Geometric Numerical Integration. (Berlin: Springer)

    [5]

    Chi Y H, Liu X S, Ding P Z 2006 Acta Phys. Sin. 55 6320 (in Chinese) [匙玉华, 刘学深, 丁培柱 2006 物理学报 55 6320]

    [6]

    Luo X Y, Liu X S, Ding P Z 2007 Acta Phys. Sin. 56 604 (in Chinese) [罗香怡, 刘学深, 丁培柱 2007 物理学报 56 604]

    [7]

    Liu X S, Wei J Y, Ding P Z 2005 Chin. Phys. 14 231

    [8]

    Bian X B, Qiao H X, Shi T Y 2007 Chin. Phys. 16 1822

    [9]

    Cao Y, Yang K Q 2003 Acta Phys. Sin. 52 1984 (in Chinese) [曹禹, 杨孔庆 2003 物理学报 52 1984]

    [10]

    Hu W P, Deng Z C 2008 Chin. Phys. B 17 3923

    [11]

    Zhong S Y, Wu X, Liu S Q, Deng X F 2010 Phys. Rev. D 82 124040

    [12]

    Zhong S Y, Wu X 2011 Acta Phys. Sin. 60 090402 (in Chinese) [钟双英, 伍歆 2011 物理学报 60 090402]

    [13]

    Zhong S Y, Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [钟双英, 刘崧 2012 物理学报 61 120401]

    [14]

    Wu X, Zhong S Y 2011 Gen. Relat. Gravit. 43 2185

    [15]

    Ruth R D 1983 IEEE Tran. Nucl. Sci. 30 2669

    [16]

    Preto M, Saha P 2009 Astrophy. J. 703 1743

    [17]

    Liao X H 1997 Celest. Mech. Dyn. Astron. 66 243

    [18]

    Lubich C, Walther B, Braugmann B 2010 Phys. Rev. D 81 104025

    [19]

    Forest E, Ruth R D 1990 Physica D 43 105

    [20]

    Yoshida H 1990 Phys. Lett. A 150 262

    [21]

    Wisdom J, Holman M 1991 Astron. J. 102 1528

    [22]

    Preto M, Tremaine S 1999 Astron. J. 118 2532

    [23]

    Laskar J, Robutel P 2001 Celest. Mech. Dyn. Astron. 80 39

    [24]

    Wisdom J, Holman M, Touma J 1996 Fields Inst. Commun. 10 217

    [25]

    Chin S A 1997 Phys. Lett. A 75 226

    [26]

    Chin S A, Chen C R 2005 Celest. Mech. Dyn. Astron. 91 301

    [27]

    Chin S A 2007 Phys. Rev. E 75 036701

    [28]

    Xu J, Wu X 2010 Res. Astron. Astrophys. 10 173

    [29]

    Sun W, Wu X, Huang G Q 2011 Res. Astron. Astrophys. 11 353

    [30]

    Li R, Wu X 2010 Science China: Physics, Mechanics & Astronomy 53 1600

    [31]

    Omelyan I P, Mryglod I M, Folk R 2003 Comput. Phys. Commun. 151 272

    [32]

    Li R, Wu X 2010 Acta Phys. Sin. 59 7135 (in Chinese) [李荣,伍歆 2010 物理学报 59 7135]

    [33]

    Wu X, Huang T Y 2003 Phys. Lett. A 313 77

    [34]

    Wu X, Huang T Y, Zhang H 2006 Phys. Rev. D 74 083001

    [35]

    Murray C D, Dermott S F 1999 Solar System Dynamics (Cambridge, UK: Cambridge Univ. Press)

    [36]

    Tancredi G, Sánchez A, Roig F 2001 Astron. J. 121 1171

    [37]

    Froeschlé C, Lega E 2000 Celest. Mech. Dyn. Astron. 78 167

    [38]

    Wu X, Xie Y 2008 Phys. Rev. D 77 103012

    [39]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [40]

    Wang Y Z, Wu X, Zhong S Y 2012 Acta Phys. Sin. 61 160401 (in Chinese) [王玉诏, 伍歆, 钟双英 2012 物理学报 61 160401]

  • [1] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究. 物理学报, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [3] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [4] 李先锐, 朱彦丽. DC-DC变换器的信息熵分析. 物理学报, 2014, 63(23): 238401. doi: 10.7498/aps.63.238401
    [5] 王光义, 袁方. 级联混沌及其动力学特性研究. 物理学报, 2013, 62(2): 020506. doi: 10.7498/aps.62.020506
    [6] 郝建红, 孙娜燕. 损耗型变形耦合电机系统的混沌参数特性. 物理学报, 2012, 61(15): 150504. doi: 10.7498/aps.61.150504
    [7] 钟双英, 伍歆. 半隐Euler法和隐中点法嵌入混合辛积分器的比较. 物理学报, 2011, 60(9): 090402. doi: 10.7498/aps.60.090402
    [8] 牛超, 李夕海, 刘代志. 地球变化磁场Z分量的混沌动力学特性分析. 物理学报, 2010, 59(5): 3077-3087. doi: 10.7498/aps.59.3077
    [9] 许喆, 刘崇新, 杨韬. 一种新型混沌系统的分析及电路实现. 物理学报, 2010, 59(1): 131-139. doi: 10.7498/aps.59.131
    [10] 李荣, 伍歆. 两个三阶最优化力梯度辛积分器的对称组合. 物理学报, 2010, 59(10): 7135-7143. doi: 10.7498/aps.59.7135
    [11] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究. 物理学报, 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [12] 唐良瑞, 李静, 樊冰, 翟明岳. 新三维混沌系统及其电路仿真. 物理学报, 2009, 58(2): 785-793. doi: 10.7498/aps.58.785
    [13] 刘会师, 忻向军, 尹霄丽, 余重秀, 张琦. 切比雪夫光混沌发生器的优化. 物理学报, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [14] 张晓丹, 刘翔, 赵品栋. 一类延迟混沌系统沿主轴方向上Lyapunov指数的计算方法. 物理学报, 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [15] 张勇, 关伟. 基于最大Lyapunov指数的多变量混沌时间序列预测. 物理学报, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [16] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [17] 刘金海, 张化光, 冯 健. 输油管道压力时间序列混沌特性研究. 物理学报, 2008, 57(11): 6868-6877. doi: 10.7498/aps.57.6868
    [18] 盛利元, 孙克辉, 李传兵. 基于切延迟的椭圆反射腔离散混沌系统及其性能研究. 物理学报, 2004, 53(9): 2871-2876. doi: 10.7498/aps.53.2871
    [19] 韦保林, 罗晓曙, 汪秉宏, 全宏俊, 郭维, 傅金阶. 一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法. 物理学报, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [20] 李国辉, 周世平, 徐得名, 赖建文. 间隙线性反馈控制混沌. 物理学报, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
计量
  • 文章访问数:  6387
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-11
  • 修回日期:  2013-03-27
  • 刊出日期:  2013-07-05

/

返回文章
返回