搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测

李长亮 陈智辉 冯光 王晓伟 杨毅彪 费宏明 孙非 刘一超

引用本文:
Citation:

基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测

李长亮, 陈智辉, 冯光, 王晓伟, 杨毅彪, 费宏明, 孙非, 刘一超

Micro-displacement detection of nanofluidic fluorescent particles based on waveguide-concentric ring resonator model

Li Chang-Liang, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Yang Yi-Biao, Fei Hong-Ming, Sun Fei, Liu Yi-Chao
PDF
HTML
导出引用
  • 对微纳流体中纳米粒子的动态跟踪与检测一直是一项具有挑战性和高要求的工作. 本文提出了波导-同心环形谐振腔集成光学模型, 根据波导-同心环形谐振腔耦合结构输出的荧光功率强度变化来实现对微纳流体中纳米颗粒的微位移检测. 由于环形微谐振腔具有高Q以及对周围环境响应敏感的特性, 因而极大提高了器件的灵敏度. 使用时域有限差分法对荧光的偏振态, 两个环形谐振腔的间距等参数进行了数值仿真模拟, 利用荧光输出功率双峰值的变化能够对纳米粒子的微位移进行高精度的检测. 基于双峰值变化的同步检测可降低环境噪声影响从而提高了检测精度, 数值模拟结果也证实了此种方法可对纳米流体中纳米颗粒在0—1000 nm范围对微位移进行实时动态的测定. 本工作可以为微纳流体领域传感器系统的设计提供新的方向和思路.
    The dynamic tracking and detecting of nanoparticles in micro-nanofluids have always been a challenging and demanding task. In this work, an integrated model of waveguide-concentric ring resonator is proposed based on the waveguide-concentric ring resonator. The change of the fluorescence power intensity outputted by the cavity coupling structure is used to realize the micro-displacement detection of nanoparticles in the micro-nano fluid. Because the ring micro-resonator has the characteristics of high Q and the sensitivity to the surrounding environment, the sensitivity of the device is greatly improved. The finite-difference time domain method is used to study the parameters such as the polarization state of the fluorescence and the distance between the two ring resonators. The double-peak change of the fluorescence output power can be used to detect the displacement of the nanoparticles with high precision. Based on the synchronization of the double-peak changes, the detection can reduce the influence of environmental noise and improve the detection accuracy. The numerical simulation results also confirm that this method can measure the micro-displacement of nanoparticles in nanofluids in a range of 0–1000 nm, providing new directions and ideas.
      通信作者: 陈智辉, huixu@126.com
    • 基金项目: 国家自然科学基金(批准号: 62175178, 11674239, 61971300, 61905208, 11904255)、中央引导地方科技发展资金项目(批准号: YDZJSX2021A013)、山西省青年拔尖人才支持计划和三晋英才支持计划资助的课题.
      Corresponding author: Chen Zhi-Hui, huixu@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175178, 11674239, 61971300, 61905208, 11904255), the Central Guidance on Local Science and Technology Development Fund of Shanxi Province, China (Grant No. YDZJSX2021A013), the Program for the Top Young Talents of Shanxi Province, China, and the Program for the Sanjin Outstanding Talents of China
    [1]

    闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭 2016 物理学报 65 178301Google Scholar

    Min L L, Chen S Y, Sheng Z Z, Wang H L, Wu F, Wang M, Hou X 2016 Acta Phys. Sin. 65 178301Google Scholar

    [2]

    Mitchell K R, Esene J E, Woolley A T 2022 Anal. Bioanal. Chem. 414 167Google Scholar

    [3]

    Rigas E, Hallam J M, Charrett T O H, Ford H D, Tatam R P 2019 Opt. Express 27 23849Google Scholar

    [4]

    Komatsu T, Tokeshi M, Fan S K 2022 Biosens. Bioelectron. 195 113631Google Scholar

    [5]

    王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华 2020 物理学报 69 168202Google Scholar

    Wang X, Wang K G, Meng K K, Sun D, Han T Y, Gao A H 2020 Acta Phys. Sin 69 168202Google Scholar

    [6]

    Lee T H, Kwon H B, Song W Y, Lee S S, Kim Y J 2021 Lab Chip 21 1503Google Scholar

    [7]

    Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X 2021 Light Sci. Appl. 10 110Google Scholar

    [8]

    Sreekanth K V, Sreejith S, Alapan Y, Sitti M, Lim C T, Singh R 2019 Adv. Opt. Mater. 7 1801313Google Scholar

    [9]

    Niculescu A G, Chircov C, Birca A C, Grumezescu A M 2021 Int. J. Mol. Sci. 22 2

    [10]

    Liu Y, Zhang X 2021 Micromachines (Basel) 12 1

    [11]

    Gong T, Kong K V, Goh D, Olivo M, Yong K T 2015 Biomed. Opt. Express 6 2076Google Scholar

    [12]

    唐文来, 项楠, 张鑫杰, 黄笛, 倪中华 2015 物理学报 64 184703Google Scholar

    Tang W L, Xiang N, Zhang X J, Huang D, Ni Z H 2015 Acta Phys. Sin. 64 184703Google Scholar

    [13]

    Postigo P A, Alvaro R, Juarros A, Merino S 2016 Biomed. Opt. Express 7 3289Google Scholar

    [14]

    Guo J, Liu X, Kang K, Ai Y, Wang Z, Kang Y 2015 J. Lightwave Technol. 33 3433Google Scholar

    [15]

    Liang L, Zhao C, Xie F, Sun L P, Ran Y, Jin L, Guan B O 2020 Opt. Express 28 24408Google Scholar

    [16]

    Ha B, Kim T J, Moon E, Giaccia A J, Pratx G 2021 Biosens. Bioelectron. 194 113565Google Scholar

    [17]

    Lipka T, Moldenhauer L, Wahn L, Trieu H K 2017 JOL 42 1084

    [18]

    Wang Y, Chen ZH 2018 J. Mater. Sci. 54 4970

    [19]

    Wang Y, Wu N, Chen Z H 2021 J. Mater. Sci. 56 14368Google Scholar

    [20]

    Chen S, Hao R, Zhang Y, Yang H 2019 Photon. Res. 7 532Google Scholar

    [21]

    Bag S K, Sinha R K, Wan M, Varshney S K 2021 J. Phys. D Appl. Phys. 54 1601Google Scholar

    [22]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [23]

    Pin C, Jager J B, Tardif M, Picard E, Hadji E, de Fornel F, Cluzel B 2018 Lab Chip 18 1750Google Scholar

    [24]

    Lin S, Crozier K B 2011 Lab Chip 11 4047Google Scholar

    [25]

    Wu S H, Huang N, Jaquay E, Povinelli M L 2016 Nano Lett. 16 5261Google Scholar

    [26]

    Xu Z, Song W, Crozier K B 2018 ACS Photonics 5 4993Google Scholar

    [27]

    Ma Z, Hanham S M, Arroyo Huidobro P, Gong Y, Hong M, Klein N, Maier S A 2017 APL Photonics 2 116102Google Scholar

    [28]

    Jiang B, Dai H, Zou Y, Chen X J 2018 Opt. Express 26 12579Google Scholar

    [29]

    肖金标, 罗辉, 徐银, 孙小菡 2015 物理学报 64 194207Google Scholar

    Xiao J B, Luo H, Xu Y, Sun X H 2015 Acta Phys. Sin. 64 194207Google Scholar

    [30]

    唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar

    Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar

    [31]

    Chien M H, Steurer J, Sadeghi P, Cazier N, Schmid S 2020 ACS Photonics 7 2197Google Scholar

    [32]

    Wang W, Liu S, Gu Z, Wang Y 2020 Phys. Rev. A 101 13833Google Scholar

    [33]

    Liu Y, Shi L, Xu X, Zhao P, Wang Z, Pu S, Zhang X 2014 Lab Chip 14 3004Google Scholar

    [34]

    Salafi T, Zhang Y, Zhang Y 2019 Nanomicro. Lett. 11 77

    [35]

    蒋炳炎, 彭涛, 袁帅, 周明勇 2021 化学进展 33 17Google Scholar

    Jiang B Y, Peng T, Yuan S, Zhou M Y 2021 Prog. Chem. 33 17Google Scholar

    [36]

    李霖伟, 陈智辉, 杨毅彪, 费宏明 2021 中国光学 14 145Google Scholar

    Li L W, Chen Z H, Yang Y B, Fei H M 2021 Chin. Opt. 14 145Google Scholar

  • 图 1  (a) 波导-同心环形谐振结构模型的三维示意图; (b) 波导-同心环形谐振结构的二维示意图

    Fig. 1.  (a) 3D schematic diagram of the waveguide-concentric ring resonant structure model; (b) 2D schematic diagram of the waveguide-concentric ring resonant structure.

    图 2  (a) 不同偏振状态下的功率曲线示意图; (b)—(d) XYZ三个不同偏振态下的量子点在波长为1281 nm处的电场图

    Fig. 2.  (a) Schematic diagram of the power curves under different polarization states; (b)–(d) the electric field diagrams of the quantum dots at the wavelength of 1281 nm under three different polarization states of XYZ

    图 3  不同上方波导宽度的荧光输出功率曲线图

    Fig. 3.  Fluorescence output power curves of different upper waveguide widths.

    图 4  材料折射率为2.7—3.0的荧光输出功率曲线

    Fig. 4.  The fluorescence output power curve of the material with a refractive index of 2.7–3.0.

    图 5  不同环间距的荧光输出功率曲线图

    Fig. 5.  Fluorescence output power curves of different ring spacings.

    图 6  (a)—(i) 环间距分别为0, 50, 100, 150, 200, 250, 300, 350, 400 nm的电场分布图(λ = 1281 nm)

    Fig. 6.  (a)–(i) Electric field distributions with ring spacings of 0, 50, 100, 150, 200, 250, 300, 350, and 400 nm (λ = 1281 nm).

    图 7  (a), (b) 环间距在350 nm与50 nm时, 荧光量子点的运动范围在0—1000 nm时的荧光输出示意图; (c) 环间距在50 nm时, 波长在1280 nm与1325 nm附近时, 荧光量子点的运动范围在0—1000 nm时的荧光峰值功率曲线图

    Fig. 7.  (a), (b) Schematic diagrams of the fluorescence output when the ring spacings are 350 nm and 50 nm, and the motion range of the fluorescent quantum dots is 0–1000 nm; (c) when the ring spacing is 50 nm, the wavelengths are 1280 nm and 1325 nm. Fluorescence peak power curve graph when the motion range of fluorescent quantum dots is in the vicinity of 0–1000 nm

    图 8  荧光量子点的运动范围在0—1000 nm变化时 (a)本工作的荧光功率输出示意图, (b) 波导-单谐振腔的荧光功率输出示意图; (c), (d)波长在1280 nm与1325 nm附近时, 两个结构的荧光输出功率峰值曲线图

    Fig. 8.  When the motion range of fluorescent quantum dots varies from 0 to 1000 nm: (a) The schematic diagram of the fluorescence power output of this work; (b) the schematic diagram of the fluorescence power output of the waveguide-single resonator; (c), (d) the fluorescence output power peak curves of the two structures when the wavelength is around 1280 nm and 1325 nm, respectively.

  • [1]

    闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭 2016 物理学报 65 178301Google Scholar

    Min L L, Chen S Y, Sheng Z Z, Wang H L, Wu F, Wang M, Hou X 2016 Acta Phys. Sin. 65 178301Google Scholar

    [2]

    Mitchell K R, Esene J E, Woolley A T 2022 Anal. Bioanal. Chem. 414 167Google Scholar

    [3]

    Rigas E, Hallam J M, Charrett T O H, Ford H D, Tatam R P 2019 Opt. Express 27 23849Google Scholar

    [4]

    Komatsu T, Tokeshi M, Fan S K 2022 Biosens. Bioelectron. 195 113631Google Scholar

    [5]

    王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华 2020 物理学报 69 168202Google Scholar

    Wang X, Wang K G, Meng K K, Sun D, Han T Y, Gao A H 2020 Acta Phys. Sin 69 168202Google Scholar

    [6]

    Lee T H, Kwon H B, Song W Y, Lee S S, Kim Y J 2021 Lab Chip 21 1503Google Scholar

    [7]

    Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X 2021 Light Sci. Appl. 10 110Google Scholar

    [8]

    Sreekanth K V, Sreejith S, Alapan Y, Sitti M, Lim C T, Singh R 2019 Adv. Opt. Mater. 7 1801313Google Scholar

    [9]

    Niculescu A G, Chircov C, Birca A C, Grumezescu A M 2021 Int. J. Mol. Sci. 22 2

    [10]

    Liu Y, Zhang X 2021 Micromachines (Basel) 12 1

    [11]

    Gong T, Kong K V, Goh D, Olivo M, Yong K T 2015 Biomed. Opt. Express 6 2076Google Scholar

    [12]

    唐文来, 项楠, 张鑫杰, 黄笛, 倪中华 2015 物理学报 64 184703Google Scholar

    Tang W L, Xiang N, Zhang X J, Huang D, Ni Z H 2015 Acta Phys. Sin. 64 184703Google Scholar

    [13]

    Postigo P A, Alvaro R, Juarros A, Merino S 2016 Biomed. Opt. Express 7 3289Google Scholar

    [14]

    Guo J, Liu X, Kang K, Ai Y, Wang Z, Kang Y 2015 J. Lightwave Technol. 33 3433Google Scholar

    [15]

    Liang L, Zhao C, Xie F, Sun L P, Ran Y, Jin L, Guan B O 2020 Opt. Express 28 24408Google Scholar

    [16]

    Ha B, Kim T J, Moon E, Giaccia A J, Pratx G 2021 Biosens. Bioelectron. 194 113565Google Scholar

    [17]

    Lipka T, Moldenhauer L, Wahn L, Trieu H K 2017 JOL 42 1084

    [18]

    Wang Y, Chen ZH 2018 J. Mater. Sci. 54 4970

    [19]

    Wang Y, Wu N, Chen Z H 2021 J. Mater. Sci. 56 14368Google Scholar

    [20]

    Chen S, Hao R, Zhang Y, Yang H 2019 Photon. Res. 7 532Google Scholar

    [21]

    Bag S K, Sinha R K, Wan M, Varshney S K 2021 J. Phys. D Appl. Phys. 54 1601Google Scholar

    [22]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [23]

    Pin C, Jager J B, Tardif M, Picard E, Hadji E, de Fornel F, Cluzel B 2018 Lab Chip 18 1750Google Scholar

    [24]

    Lin S, Crozier K B 2011 Lab Chip 11 4047Google Scholar

    [25]

    Wu S H, Huang N, Jaquay E, Povinelli M L 2016 Nano Lett. 16 5261Google Scholar

    [26]

    Xu Z, Song W, Crozier K B 2018 ACS Photonics 5 4993Google Scholar

    [27]

    Ma Z, Hanham S M, Arroyo Huidobro P, Gong Y, Hong M, Klein N, Maier S A 2017 APL Photonics 2 116102Google Scholar

    [28]

    Jiang B, Dai H, Zou Y, Chen X J 2018 Opt. Express 26 12579Google Scholar

    [29]

    肖金标, 罗辉, 徐银, 孙小菡 2015 物理学报 64 194207Google Scholar

    Xiao J B, Luo H, Xu Y, Sun X H 2015 Acta Phys. Sin. 64 194207Google Scholar

    [30]

    唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar

    Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar

    [31]

    Chien M H, Steurer J, Sadeghi P, Cazier N, Schmid S 2020 ACS Photonics 7 2197Google Scholar

    [32]

    Wang W, Liu S, Gu Z, Wang Y 2020 Phys. Rev. A 101 13833Google Scholar

    [33]

    Liu Y, Shi L, Xu X, Zhao P, Wang Z, Pu S, Zhang X 2014 Lab Chip 14 3004Google Scholar

    [34]

    Salafi T, Zhang Y, Zhang Y 2019 Nanomicro. Lett. 11 77

    [35]

    蒋炳炎, 彭涛, 袁帅, 周明勇 2021 化学进展 33 17Google Scholar

    Jiang B Y, Peng T, Yuan S, Zhou M Y 2021 Prog. Chem. 33 17Google Scholar

    [36]

    李霖伟, 陈智辉, 杨毅彪, 费宏明 2021 中国光学 14 145Google Scholar

    Li L W, Chen Z H, Yang Y B, Fei H M 2021 Chin. Opt. 14 145Google Scholar

  • [1] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征. 物理学报, 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [2] 郭付周, 陈智辉, 冯光, 王晓伟, 费宏明, 孙非, 杨毅彪. 电介质微球和金属平面纳米层增强荧光远场定向发射. 物理学报, 2022, 71(17): 176801. doi: 10.7498/aps.71.20220605
    [3] 魏晨崴, 曹暾. 基于α-MoO3的可调谐法布里-珀罗谐振腔比色生物传感器. 物理学报, 2021, 70(4): 048701. doi: 10.7498/aps.70.20201548
    [4] 瞿立建. 浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论. 物理学报, 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [5] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才. 光纤环形谐振腔的频率锁定及其特性. 物理学报, 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [6] 王亚明, 刘永利, 张林. Ti纳米粒子熔化与凝结的原子尺度模拟. 物理学报, 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [7] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测. 物理学报, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [8] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性. 物理学报, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [9] 钱泽宇, 张林. 熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟. 物理学报, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [10] 汪志刚, 黄娆, 文玉华. Pt-Au核-壳结构纳米粒子热稳定性的分子动力学研究. 物理学报, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [11] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [12] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [13] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [14] 田惠忱, 刘丽, 文玉华. 立方铂纳米粒子的形状变化与熔化特性的分子动力学研究. 物理学报, 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [15] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [16] 段芳莉, 雒建斌, 温诗铸. 纳米粒子与单晶硅表面碰撞的反弹机理研究. 物理学报, 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [17] 陈志谦, 陈洪, 程南璞, 郑瑞伦. 纳米量级超导Al粒子在磁场中的Zeeman分裂. 物理学报, 2002, 51(3): 649-654. doi: 10.7498/aps.51.649
    [18] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合. 物理学报, 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [19] 许北雪, 吴锦雷, 邵庆益, 张兆祥, 刘惟敏, 薛增泉, 吴全德. 稀土镧对薄膜中银纳米粒子的细化作用. 物理学报, 2002, 51(5): 1103-1107. doi: 10.7498/aps.51.1103
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  3889
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-06-14
  • 上网日期:  2022-10-09
  • 刊出日期:  2022-10-20

/

返回文章
返回