-
本文提出了一种由电介质微球和金属平面纳米层组成的复合结构, 用于增强荧光远场定向发射强度和提高荧光收集效率. 通过时域有限差分法研究了位于电介质微球和金层之间量子点的激发和发射过程. 量子点作为荧光材料涂敷于聚甲基丙烯酸甲酯中, 用于控制和金层的距离从而调控荧光增强. 该结构基于等离激元耦合、回音壁模式以及光子纳米射流之间的协同效应, 使远场荧光强度增强230倍, 荧光收集效率高达70%. 与电介质微球和金球二聚体复合结构增强荧光相比, 金球二聚体之间的间距不易控制, 此外量子点要放在金球之间特定的位置. 而本文提出的三维平面复合纳米结构相对更方便实现. 以上结果在提高荧光生物检测灵敏度、成像质量以及发光器件效率等领域具有非常重要的应用意义.Controlling the emission characteristics of fluorescent substances and increasing the intensity of fluorescence emission are crucial for fluorescence detecting technology in single-molecule detection, biomedicine, and sensing applications. Since fluorescence emission is isotropic in nature, the collected fluorescence is only accounted for a small fraction of the total emitted fluorescence. In this paper, a composite structure composed of dielectric microsphere and metallic planar nanolayers is proposed to enhance the fluorescence far-field directional emission intensity and improve the fluorescence collection efficiency. The excitation process and the emission process of quantum dots (QDs) located between the dielectric microspheres and the gold layer are investigated by the finite difference time domain (FDTD) method. In the emission process, the emission of QDs in a homogeneous medium is isotropic. Therefore, we usually select several special polarizations in theoretical analysis state for research. In this paper, we first study the effect of the structure on the fluorescence emission enhancement of QDs when the QDs are in the x-, y-, and z-polarization state. Some results can be obtained as shown below. When the radiation direction of the QDs is perpendicular to the microsphere plane layered structure, the structure is coupled with the emitted fluorescence, thereby realizing the directional enhancement of the emitted fluorescence of the QDs, and the obvious fluorescence enhancement is obtained in the x- and y-polarization state. Therefore, in the research, we choose and investigate the dipole light source of x-polarization state. We mainly study the influence of microsphere radius, refractive index, and QDs position on the fluorescence directional enhancement. The QDs as a fluorescent material are coated in polymethyl methacrylate (PMMA) to control the distance from the gold layer to tune the fluorescence enhancement. The structure is based on the synergistic effect among plasmon coupling, whispering gallery mode and photonic nanojet, which enhances the far-field fluorescence of QDs by a factor of 230, and the fluorescence collection efficiency is as high as 70%. Comparing with the enhanced fluorescence of the dielectric microspheres and the gold sphere dimer composite structure, the distance between the gold sphere dimers is not easy to control, and the QDs should be placed at specific positions between the gold spheres. The structure we propose is more convenient to implement. In this paper, not only the emission enhancement process of QDs is studied in detail, but also the excitation process of QDs is investigated. Our proposed dielectric microsphere metal planar nanolayered structure can enhance the excitation of QDs in most areas, proving that our designed structure can effectively realize the excitation enhancement of QDs. The above results have very important applications in the fluorescence biological detection, imaging, and light-emitting devices.
-
Keywords:
- fluorescence enhancement /
- photonic nanojet /
- dielectric microsphere /
- biological detection
[1] Wang J, Sun C, Ji M, Wang B, Wang P, Zhou G, Dong B, Du W, Huang L, Wang H, Ren L 2021 Protein. Expr. Purif. 187 105952Google Scholar
[2] Zhou M, Cao J, Akers W J 2016 Methods Mol. Biol. 1444 45Google Scholar
[3] Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar
[4] Itoh T 2012 Chem. Rev. 112 4541Google Scholar
[5] Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H 2013 RSC Advances 3 14571Google Scholar
[6] Lu C Y, Browne D E, Yang T, Pan J W 2007 Phys. Rev. Lett. 99 250504Google Scholar
[7] Fan L, Sun X, Xiong C, Schuck C, Tang H X 2013 Appl. Phys. Lett. 102 153507Google Scholar
[8] Marcu L 2012 Ann. Biomed. Eng. 40 304Google Scholar
[9] Wang Z, Zheng Y, Zhao D, Zhao Z, Liu L, Pliss A, Zhu F, Liu J, Qu J, Luan P 2017 J. Innov. Opt. Heal. Sci. 11 1830001Google Scholar
[10] Ge F, Yang X 2017 J. Mater. Sci. 53 4840Google Scholar
[11] Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K 2021 Biosens. Bioelectron. 194 113577Google Scholar
[12] Cheng Q, Wang S, Liu N 2021 IEEE Sens. J. 21 17785Google Scholar
[13] Li L, Wang W, Luk T S, Yang X, Gao J 2017 ACS Photonics 4 501Google Scholar
[14] Luo S, Li Q, Yang Y, Chen X, Wang W, Qu Y, Qiu M 2017 Laser & Photonics Rev. 11 1600299Google Scholar
[15] Karvinen P, Nuutinen T, Hyvarinen O, Vahimaa P 2008 Optics Express 16 16364Google Scholar
[16] Muriano A, Thayil K N A, Salvador J P, Loza-Alvarez P, Soria S, Galve R, Marco M P 2012 Sensor. Actuat. B:Chem. 174 394Google Scholar
[17] Lin J H, Liou H Y, Wang C D, Tseng C Y, Lee C T, Ting C C, Kan H C, Hsu C C 2015 ACS Photonics 2 530Google Scholar
[18] Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar
[19] Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser & Photonics Rev. 12 1800017Google Scholar
[20] Choudhury S D, Badugu R, Nowaczyk K, Ray K, Lakowicz J R 2013 J. Phys. Chem. Lett. 4 227Google Scholar
[21] Yan Y, Zeng Y, Wu Y, Zhao Y, Ji L, Jiang Y, Li L 2014 Opt. Express. 22 23552Google Scholar
[22] Golmakaniyoon S, Hernandez-Martinez P L, Demir H V, Sun X W 2017 Appl. Phys. Lett. 111 093302Google Scholar
[23] Nyman M, Shevchenko A, Shavrin I, Ando Y, Lindfors K, Kaivola M 2019 APL Photonics 4 076101Google Scholar
[24] Huang Y, Lin W, Chen K, Zhang W, Chen X, Zhang M Q 2014 Phys. Chem. Chem. Phys. 16 11584Google Scholar
[25] Liu Y S, Lin H C, Xu H L 2018 IEEE Photonics J. 10 1Google Scholar
[26] Hong F, Tang C, Xue Q, Zhao L, Shi H, Hu B, Zhang X 2019 Langmuir 35 14833Google Scholar
[27] Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214Google Scholar
[28] Liu C Y 2019 Crystals 9 198Google Scholar
[29] Liu C Y, Lin F C 2016 Opt. Commun. 380 287Google Scholar
[30] Mahariq I, Abdeljawad T, Karar A S, Alboon S A, Kurt H, Maslov A V 2020 Photonics 7 50Google Scholar
[31] Sergeev A A, Sergeeva K A, Leonov A A, Voznesenskiy S S 2020 4th International Conference on Metamaterials and Nanophotonics (METANANO) Tbilisi, Georgia, 2020, Sep 14–18 pp261–263
[32] Zhang W, Lei H 2020 Nanoscale 12 6596Google Scholar
[33] Zhou S, Zhou T 2020 Appl. Phys. Express 13 042010Google Scholar
[34] Kong S C, Simpson J J, Backman V 2008 IEEE Microw. Wirel. Compon. Lett. 18 4Google Scholar
[35] Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method, Second Edition (Hoboken: IEEE Press) pp85–96
[36] Duan J, Song L, Zhan J 2010 Nano Res. 2 61Google Scholar
[37] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[38] Palik E D 1985 Handbook of Optical Constants of Solids First Edition (Orlando: Academic Press) pp286–287
[39] Das G M, Ringne A B, Dantham V R, Easwaran R K, Laha R 2017 Opt. Express 25 19822Google Scholar
[40] Garrett C G B, Kaiser W, Bond W L 1961 Phys. Rev. 124 1807Google Scholar
[41] Guo M, Ye Y H, Hou J, Du B 2015 Photonics Res. 3 339Google Scholar
[42] Zhu H, Chen M, Zhou S, Wu L 2017 Macromolecules 50 660Google Scholar
-
图 1 电介质微球(灰色球)和金属平面纳米层组成的复合结构 (a) 三维结构示意图; (b)—(d) 结构gp, ga, gs的侧视图, QD代表量子点
Fig. 1. Composite structure composed of dielectric microsphere (the gray ball) and metallic planar nanolayers: (a) 3D schematic diagram of the structures; (b)–(d) the side views of the structures of gp, ga, gs in order, QD stands for quantum dot.
图 2 (a) 不同偏振态下偶极子光源的功率曲线; (b)—(d) 依次为x, y, z偏振态下的偶极子光源在中心波长590 nm处的俯视和横截面电场分布图
Fig. 2. (a) Power curves of quantum dots in different polarization states; (b)–(d) top-view and cross-sectional electric field profiles of the dipole light source at the center wavelength of 590 nm under the x, y, z polarization states in turn, respectively.
图 3 量子点位于(0, 0, 0.78) μm处 (a) 3种结构的远场功率曲线图; (b)—(d) R = 2 μm, n = 1.5, 结构gp, ga和gs横截面处的电场分布图
Fig. 3. Quantum dots are located at (0, 0, 0.78) μm: (a) Far-field power curves of the three structures; (b)–(d) plots of the electric field distribution at the cross-section of the gp, ga and gs structures at R = 2 μm, n = 1.5.
图 6 (a) R = 2 μm, n = 1.5时, 3个结构的远场收集效率; (b)—(e) 单色平面波长为405 nm处的激发电场图 (b) gp结构; (c) ga结构; (d), (e) gs结构的TE和TM偏振
Fig. 6. (a) Far-field collection efficiencies of the three structures with R = 2 μm, n = 1.5; (b)–(e) excitation electric field maps at a wavelength of 405 nm in the monochromatic plane: (b) gp structure; (c) ga structure; (d), (e) the TE and TM polarizations of gs structure, respectively.
-
[1] Wang J, Sun C, Ji M, Wang B, Wang P, Zhou G, Dong B, Du W, Huang L, Wang H, Ren L 2021 Protein. Expr. Purif. 187 105952Google Scholar
[2] Zhou M, Cao J, Akers W J 2016 Methods Mol. Biol. 1444 45Google Scholar
[3] Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar
[4] Itoh T 2012 Chem. Rev. 112 4541Google Scholar
[5] Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H 2013 RSC Advances 3 14571Google Scholar
[6] Lu C Y, Browne D E, Yang T, Pan J W 2007 Phys. Rev. Lett. 99 250504Google Scholar
[7] Fan L, Sun X, Xiong C, Schuck C, Tang H X 2013 Appl. Phys. Lett. 102 153507Google Scholar
[8] Marcu L 2012 Ann. Biomed. Eng. 40 304Google Scholar
[9] Wang Z, Zheng Y, Zhao D, Zhao Z, Liu L, Pliss A, Zhu F, Liu J, Qu J, Luan P 2017 J. Innov. Opt. Heal. Sci. 11 1830001Google Scholar
[10] Ge F, Yang X 2017 J. Mater. Sci. 53 4840Google Scholar
[11] Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K 2021 Biosens. Bioelectron. 194 113577Google Scholar
[12] Cheng Q, Wang S, Liu N 2021 IEEE Sens. J. 21 17785Google Scholar
[13] Li L, Wang W, Luk T S, Yang X, Gao J 2017 ACS Photonics 4 501Google Scholar
[14] Luo S, Li Q, Yang Y, Chen X, Wang W, Qu Y, Qiu M 2017 Laser & Photonics Rev. 11 1600299Google Scholar
[15] Karvinen P, Nuutinen T, Hyvarinen O, Vahimaa P 2008 Optics Express 16 16364Google Scholar
[16] Muriano A, Thayil K N A, Salvador J P, Loza-Alvarez P, Soria S, Galve R, Marco M P 2012 Sensor. Actuat. B:Chem. 174 394Google Scholar
[17] Lin J H, Liou H Y, Wang C D, Tseng C Y, Lee C T, Ting C C, Kan H C, Hsu C C 2015 ACS Photonics 2 530Google Scholar
[18] Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar
[19] Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser & Photonics Rev. 12 1800017Google Scholar
[20] Choudhury S D, Badugu R, Nowaczyk K, Ray K, Lakowicz J R 2013 J. Phys. Chem. Lett. 4 227Google Scholar
[21] Yan Y, Zeng Y, Wu Y, Zhao Y, Ji L, Jiang Y, Li L 2014 Opt. Express. 22 23552Google Scholar
[22] Golmakaniyoon S, Hernandez-Martinez P L, Demir H V, Sun X W 2017 Appl. Phys. Lett. 111 093302Google Scholar
[23] Nyman M, Shevchenko A, Shavrin I, Ando Y, Lindfors K, Kaivola M 2019 APL Photonics 4 076101Google Scholar
[24] Huang Y, Lin W, Chen K, Zhang W, Chen X, Zhang M Q 2014 Phys. Chem. Chem. Phys. 16 11584Google Scholar
[25] Liu Y S, Lin H C, Xu H L 2018 IEEE Photonics J. 10 1Google Scholar
[26] Hong F, Tang C, Xue Q, Zhao L, Shi H, Hu B, Zhang X 2019 Langmuir 35 14833Google Scholar
[27] Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214Google Scholar
[28] Liu C Y 2019 Crystals 9 198Google Scholar
[29] Liu C Y, Lin F C 2016 Opt. Commun. 380 287Google Scholar
[30] Mahariq I, Abdeljawad T, Karar A S, Alboon S A, Kurt H, Maslov A V 2020 Photonics 7 50Google Scholar
[31] Sergeev A A, Sergeeva K A, Leonov A A, Voznesenskiy S S 2020 4th International Conference on Metamaterials and Nanophotonics (METANANO) Tbilisi, Georgia, 2020, Sep 14–18 pp261–263
[32] Zhang W, Lei H 2020 Nanoscale 12 6596Google Scholar
[33] Zhou S, Zhou T 2020 Appl. Phys. Express 13 042010Google Scholar
[34] Kong S C, Simpson J J, Backman V 2008 IEEE Microw. Wirel. Compon. Lett. 18 4Google Scholar
[35] Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method, Second Edition (Hoboken: IEEE Press) pp85–96
[36] Duan J, Song L, Zhan J 2010 Nano Res. 2 61Google Scholar
[37] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[38] Palik E D 1985 Handbook of Optical Constants of Solids First Edition (Orlando: Academic Press) pp286–287
[39] Das G M, Ringne A B, Dantham V R, Easwaran R K, Laha R 2017 Opt. Express 25 19822Google Scholar
[40] Garrett C G B, Kaiser W, Bond W L 1961 Phys. Rev. 124 1807Google Scholar
[41] Guo M, Ye Y H, Hou J, Du B 2015 Photonics Res. 3 339Google Scholar
[42] Zhu H, Chen M, Zhou S, Wu L 2017 Macromolecules 50 660Google Scholar
计量
- 文章访问数: 4820
- PDF下载量: 131
- 被引次数: 0