搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电介质微球和金属平面纳米层增强荧光远场定向发射

郭付周 陈智辉 冯光 王晓伟 费宏明 孙非 杨毅彪

引用本文:
Citation:

电介质微球和金属平面纳米层增强荧光远场定向发射

郭付周, 陈智辉, 冯光, 王晓伟, 费宏明, 孙非, 杨毅彪

Far-field directional emission of fluorescence enhanced by dielectric microsphere and metallic planar nanolayers

Guo Fu-Zhou, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Fei Hong-Ming, Sun Fei, Yang Yi-Biao
PDF
HTML
导出引用
  • 本文提出了一种由电介质微球和金属平面纳米层组成的复合结构, 用于增强荧光远场定向发射强度和提高荧光收集效率. 通过时域有限差分法研究了位于电介质微球和金层之间量子点的激发和发射过程. 量子点作为荧光材料涂敷于聚甲基丙烯酸甲酯中, 用于控制和金层的距离从而调控荧光增强. 该结构基于等离激元耦合、回音壁模式以及光子纳米射流之间的协同效应, 使远场荧光强度增强230倍, 荧光收集效率高达70%. 与电介质微球和金球二聚体复合结构增强荧光相比, 金球二聚体之间的间距不易控制, 此外量子点要放在金球之间特定的位置. 而本文提出的三维平面复合纳米结构相对更方便实现. 以上结果在提高荧光生物检测灵敏度、成像质量以及发光器件效率等领域具有非常重要的应用意义.
    Controlling the emission characteristics of fluorescent substances and increasing the intensity of fluorescence emission are crucial for fluorescence detecting technology in single-molecule detection, biomedicine, and sensing applications. Since fluorescence emission is isotropic in nature, the collected fluorescence is only accounted for a small fraction of the total emitted fluorescence. In this paper, a composite structure composed of dielectric microsphere and metallic planar nanolayers is proposed to enhance the fluorescence far-field directional emission intensity and improve the fluorescence collection efficiency. The excitation process and the emission process of quantum dots (QDs) located between the dielectric microspheres and the gold layer are investigated by the finite difference time domain (FDTD) method. In the emission process, the emission of QDs in a homogeneous medium is isotropic. Therefore, we usually select several special polarizations in theoretical analysis state for research. In this paper, we first study the effect of the structure on the fluorescence emission enhancement of QDs when the QDs are in the x-, y-, and z-polarization state. Some results can be obtained as shown below. When the radiation direction of the QDs is perpendicular to the microsphere plane layered structure, the structure is coupled with the emitted fluorescence, thereby realizing the directional enhancement of the emitted fluorescence of the QDs, and the obvious fluorescence enhancement is obtained in the x- and y-polarization state. Therefore, in the research, we choose and investigate the dipole light source of x-polarization state. We mainly study the influence of microsphere radius, refractive index, and QDs position on the fluorescence directional enhancement. The QDs as a fluorescent material are coated in polymethyl methacrylate (PMMA) to control the distance from the gold layer to tune the fluorescence enhancement. The structure is based on the synergistic effect among plasmon coupling, whispering gallery mode and photonic nanojet, which enhances the far-field fluorescence of QDs by a factor of 230, and the fluorescence collection efficiency is as high as 70%. Comparing with the enhanced fluorescence of the dielectric microspheres and the gold sphere dimer composite structure, the distance between the gold sphere dimers is not easy to control, and the QDs should be placed at specific positions between the gold spheres. The structure we propose is more convenient to implement. In this paper, not only the emission enhancement process of QDs is studied in detail, but also the excitation process of QDs is investigated. Our proposed dielectric microsphere metal planar nanolayered structure can enhance the excitation of QDs in most areas, proving that our designed structure can effectively realize the excitation enhancement of QDs. The above results have very important applications in the fluorescence biological detection, imaging, and light-emitting devices.
      通信作者: 陈智辉, huixu@126.com
    • 基金项目: 国家自然科学基金(批准号: 62175178)、中央引导地方科技发展资金项目(批准号: YDZJSX2021A013)、山西省青年拔尖人才支持计划和三晋英才支持计划资助的课题.
      Corresponding author: Chen Zhi-Hui, huixu@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62175178), the Central Guidance on Local Science and Technology Development Fund of Shanxi Province, China (Grant No. YDZJSX2021A013), the Program for the Top Young Talents of Shanxi Province, China, and the Program for the Sanjin Outstanding Talents of China.
    [1]

    Wang J, Sun C, Ji M, Wang B, Wang P, Zhou G, Dong B, Du W, Huang L, Wang H, Ren L 2021 Protein. Expr. Purif. 187 105952Google Scholar

    [2]

    Zhou M, Cao J, Akers W J 2016 Methods Mol. Biol. 1444 45Google Scholar

    [3]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [4]

    Itoh T 2012 Chem. Rev. 112 4541Google Scholar

    [5]

    Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H 2013 RSC Advances 3 14571Google Scholar

    [6]

    Lu C Y, Browne D E, Yang T, Pan J W 2007 Phys. Rev. Lett. 99 250504Google Scholar

    [7]

    Fan L, Sun X, Xiong C, Schuck C, Tang H X 2013 Appl. Phys. Lett. 102 153507Google Scholar

    [8]

    Marcu L 2012 Ann. Biomed. Eng. 40 304Google Scholar

    [9]

    Wang Z, Zheng Y, Zhao D, Zhao Z, Liu L, Pliss A, Zhu F, Liu J, Qu J, Luan P 2017 J. Innov. Opt. Heal. Sci. 11 1830001Google Scholar

    [10]

    Ge F, Yang X 2017 J. Mater. Sci. 53 4840Google Scholar

    [11]

    Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K 2021 Biosens. Bioelectron. 194 113577Google Scholar

    [12]

    Cheng Q, Wang S, Liu N 2021 IEEE Sens. J. 21 17785Google Scholar

    [13]

    Li L, Wang W, Luk T S, Yang X, Gao J 2017 ACS Photonics 4 501Google Scholar

    [14]

    Luo S, Li Q, Yang Y, Chen X, Wang W, Qu Y, Qiu M 2017 Laser & Photonics Rev. 11 1600299Google Scholar

    [15]

    Karvinen P, Nuutinen T, Hyvarinen O, Vahimaa P 2008 Optics Express 16 16364Google Scholar

    [16]

    Muriano A, Thayil K N A, Salvador J P, Loza-Alvarez P, Soria S, Galve R, Marco M P 2012 Sensor. Actuat. B:Chem. 174 394Google Scholar

    [17]

    Lin J H, Liou H Y, Wang C D, Tseng C Y, Lee C T, Ting C C, Kan H C, Hsu C C 2015 ACS Photonics 2 530Google Scholar

    [18]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [19]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser & Photonics Rev. 12 1800017Google Scholar

    [20]

    Choudhury S D, Badugu R, Nowaczyk K, Ray K, Lakowicz J R 2013 J. Phys. Chem. Lett. 4 227Google Scholar

    [21]

    Yan Y, Zeng Y, Wu Y, Zhao Y, Ji L, Jiang Y, Li L 2014 Opt. Express. 22 23552Google Scholar

    [22]

    Golmakaniyoon S, Hernandez-Martinez P L, Demir H V, Sun X W 2017 Appl. Phys. Lett. 111 093302Google Scholar

    [23]

    Nyman M, Shevchenko A, Shavrin I, Ando Y, Lindfors K, Kaivola M 2019 APL Photonics 4 076101Google Scholar

    [24]

    Huang Y, Lin W, Chen K, Zhang W, Chen X, Zhang M Q 2014 Phys. Chem. Chem. Phys. 16 11584Google Scholar

    [25]

    Liu Y S, Lin H C, Xu H L 2018 IEEE Photonics J. 10 1Google Scholar

    [26]

    Hong F, Tang C, Xue Q, Zhao L, Shi H, Hu B, Zhang X 2019 Langmuir 35 14833Google Scholar

    [27]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214Google Scholar

    [28]

    Liu C Y 2019 Crystals 9 198Google Scholar

    [29]

    Liu C Y, Lin F C 2016 Opt. Commun. 380 287Google Scholar

    [30]

    Mahariq I, Abdeljawad T, Karar A S, Alboon S A, Kurt H, Maslov A V 2020 Photonics 7 50Google Scholar

    [31]

    Sergeev A A, Sergeeva K A, Leonov A A, Voznesenskiy S S 2020 4th International Conference on Metamaterials and Nanophotonics (METANANO) Tbilisi, Georgia, 2020, Sep 14–18 pp261–263

    [32]

    Zhang W, Lei H 2020 Nanoscale 12 6596Google Scholar

    [33]

    Zhou S, Zhou T 2020 Appl. Phys. Express 13 042010Google Scholar

    [34]

    Kong S C, Simpson J J, Backman V 2008 IEEE Microw. Wirel. Compon. Lett. 18 4Google Scholar

    [35]

    Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method, Second Edition (Hoboken: IEEE Press) pp85–96

    [36]

    Duan J, Song L, Zhan J 2010 Nano Res. 2 61Google Scholar

    [37]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [38]

    Palik E D 1985 Handbook of Optical Constants of Solids First Edition (Orlando: Academic Press) pp286–287

    [39]

    Das G M, Ringne A B, Dantham V R, Easwaran R K, Laha R 2017 Opt. Express 25 19822Google Scholar

    [40]

    Garrett C G B, Kaiser W, Bond W L 1961 Phys. Rev. 124 1807Google Scholar

    [41]

    Guo M, Ye Y H, Hou J, Du B 2015 Photonics Res. 3 339Google Scholar

    [42]

    Zhu H, Chen M, Zhou S, Wu L 2017 Macromolecules 50 660Google Scholar

  • 图 1  电介质微球(灰色球)和金属平面纳米层组成的复合结构 (a) 三维结构示意图; (b)—(d) 结构gp, ga, gs的侧视图, QD代表量子点

    Fig. 1.  Composite structure composed of dielectric microsphere (the gray ball) and metallic planar nanolayers: (a) 3D schematic diagram of the structures; (b)–(d) the side views of the structures of gp, ga, gs in order, QD stands for quantum dot.

    图 2  (a) 不同偏振态下偶极子光源的功率曲线; (b)—(d) 依次为x, y, z偏振态下的偶极子光源在中心波长590 nm处的俯视和横截面电场分布图

    Fig. 2.  (a) Power curves of quantum dots in different polarization states; (b)–(d) top-view and cross-sectional electric field profiles of the dipole light source at the center wavelength of 590 nm under the x, y, z polarization states in turn, respectively.

    图 3  量子点位于(0, 0, 0.78) μm处 (a) 3种结构的远场功率曲线图; (b)—(d) R = 2 μm, n = 1.5, 结构gp, ga和gs横截面处的电场分布图

    Fig. 3.  Quantum dots are located at (0, 0, 0.78) μm: (a) Far-field power curves of the three structures; (b)–(d) plots of the electric field distribution at the cross-section of the gp, ga and gs structures at R = 2 μm, n = 1.5.

    图 4  n = 1.5且量子点位于(0, 0, 0.78) μm处, 不同半径电介质微球的远场功率曲线

    Fig. 4.  Far-field power curves of the dielectric microsphere with different radii for n = 1.5 and the quantum dots are located at (0, 0, 0.78) μm.

    图 5  不同折射率电介质微球的电场强度和远场散射图 (a) n = 1.3; (b) n = 1.5; (c) n = 1.7; (d) n = 1.9; (e) n = 2.1

    Fig. 5.  Eelectric field intensity and far-field scattering distributions of dielectric microsphere with different refractive indices: (a) n = 1.3; (b) n = 1.5; (c) n = 1.7; (d) n = 1.9; (e) n = 2.1.

    图 6  (a) R = 2 μm, n = 1.5时, 3个结构的远场收集效率; (b)—(e) 单色平面波长为405 nm处的激发电场图 (b) gp结构; (c) ga结构; (d), (e) gs结构的TE和TM偏振

    Fig. 6.  (a) Far-field collection efficiencies of the three structures with R = 2 μm, n = 1.5; (b)–(e) excitation electric field maps at a wavelength of 405 nm in the monochromatic plane: (b) gp structure; (c) ga structure; (d), (e) the TE and TM polarizations of gs structure, respectively.

  • [1]

    Wang J, Sun C, Ji M, Wang B, Wang P, Zhou G, Dong B, Du W, Huang L, Wang H, Ren L 2021 Protein. Expr. Purif. 187 105952Google Scholar

    [2]

    Zhou M, Cao J, Akers W J 2016 Methods Mol. Biol. 1444 45Google Scholar

    [3]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [4]

    Itoh T 2012 Chem. Rev. 112 4541Google Scholar

    [5]

    Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H 2013 RSC Advances 3 14571Google Scholar

    [6]

    Lu C Y, Browne D E, Yang T, Pan J W 2007 Phys. Rev. Lett. 99 250504Google Scholar

    [7]

    Fan L, Sun X, Xiong C, Schuck C, Tang H X 2013 Appl. Phys. Lett. 102 153507Google Scholar

    [8]

    Marcu L 2012 Ann. Biomed. Eng. 40 304Google Scholar

    [9]

    Wang Z, Zheng Y, Zhao D, Zhao Z, Liu L, Pliss A, Zhu F, Liu J, Qu J, Luan P 2017 J. Innov. Opt. Heal. Sci. 11 1830001Google Scholar

    [10]

    Ge F, Yang X 2017 J. Mater. Sci. 53 4840Google Scholar

    [11]

    Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K 2021 Biosens. Bioelectron. 194 113577Google Scholar

    [12]

    Cheng Q, Wang S, Liu N 2021 IEEE Sens. J. 21 17785Google Scholar

    [13]

    Li L, Wang W, Luk T S, Yang X, Gao J 2017 ACS Photonics 4 501Google Scholar

    [14]

    Luo S, Li Q, Yang Y, Chen X, Wang W, Qu Y, Qiu M 2017 Laser & Photonics Rev. 11 1600299Google Scholar

    [15]

    Karvinen P, Nuutinen T, Hyvarinen O, Vahimaa P 2008 Optics Express 16 16364Google Scholar

    [16]

    Muriano A, Thayil K N A, Salvador J P, Loza-Alvarez P, Soria S, Galve R, Marco M P 2012 Sensor. Actuat. B:Chem. 174 394Google Scholar

    [17]

    Lin J H, Liou H Y, Wang C D, Tseng C Y, Lee C T, Ting C C, Kan H C, Hsu C C 2015 ACS Photonics 2 530Google Scholar

    [18]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [19]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser & Photonics Rev. 12 1800017Google Scholar

    [20]

    Choudhury S D, Badugu R, Nowaczyk K, Ray K, Lakowicz J R 2013 J. Phys. Chem. Lett. 4 227Google Scholar

    [21]

    Yan Y, Zeng Y, Wu Y, Zhao Y, Ji L, Jiang Y, Li L 2014 Opt. Express. 22 23552Google Scholar

    [22]

    Golmakaniyoon S, Hernandez-Martinez P L, Demir H V, Sun X W 2017 Appl. Phys. Lett. 111 093302Google Scholar

    [23]

    Nyman M, Shevchenko A, Shavrin I, Ando Y, Lindfors K, Kaivola M 2019 APL Photonics 4 076101Google Scholar

    [24]

    Huang Y, Lin W, Chen K, Zhang W, Chen X, Zhang M Q 2014 Phys. Chem. Chem. Phys. 16 11584Google Scholar

    [25]

    Liu Y S, Lin H C, Xu H L 2018 IEEE Photonics J. 10 1Google Scholar

    [26]

    Hong F, Tang C, Xue Q, Zhao L, Shi H, Hu B, Zhang X 2019 Langmuir 35 14833Google Scholar

    [27]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214Google Scholar

    [28]

    Liu C Y 2019 Crystals 9 198Google Scholar

    [29]

    Liu C Y, Lin F C 2016 Opt. Commun. 380 287Google Scholar

    [30]

    Mahariq I, Abdeljawad T, Karar A S, Alboon S A, Kurt H, Maslov A V 2020 Photonics 7 50Google Scholar

    [31]

    Sergeev A A, Sergeeva K A, Leonov A A, Voznesenskiy S S 2020 4th International Conference on Metamaterials and Nanophotonics (METANANO) Tbilisi, Georgia, 2020, Sep 14–18 pp261–263

    [32]

    Zhang W, Lei H 2020 Nanoscale 12 6596Google Scholar

    [33]

    Zhou S, Zhou T 2020 Appl. Phys. Express 13 042010Google Scholar

    [34]

    Kong S C, Simpson J J, Backman V 2008 IEEE Microw. Wirel. Compon. Lett. 18 4Google Scholar

    [35]

    Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method, Second Edition (Hoboken: IEEE Press) pp85–96

    [36]

    Duan J, Song L, Zhan J 2010 Nano Res. 2 61Google Scholar

    [37]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [38]

    Palik E D 1985 Handbook of Optical Constants of Solids First Edition (Orlando: Academic Press) pp286–287

    [39]

    Das G M, Ringne A B, Dantham V R, Easwaran R K, Laha R 2017 Opt. Express 25 19822Google Scholar

    [40]

    Garrett C G B, Kaiser W, Bond W L 1961 Phys. Rev. 124 1807Google Scholar

    [41]

    Guo M, Ye Y H, Hou J, Du B 2015 Photonics Res. 3 339Google Scholar

    [42]

    Zhu H, Chen M, Zhou S, Wu L 2017 Macromolecules 50 660Google Scholar

  • [1] 纳米电介质电-热特性专题编者按. 物理学报, 2024, 73(2): 020101. doi: 10.7498/aps.73.020101
    [2] 潘钦杰, 赵灿东, 陈琪, 何毓辉, 缪向水. 面向单分子检测的纳米孔传感特异性增强技术. 物理学报, 2024, 73(10): 108702. doi: 10.7498/aps.73.20240159
    [3] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [4] 刘晓军, 杨雪. 基于激发态分子内质子转移过程的HBT-OMe分子检测HClO的荧光增强机理. 物理学报, 2023, 72(11): 113101. doi: 10.7498/aps.72.20222313
    [5] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [6] 李长亮, 陈智辉, 冯光, 王晓伟, 杨毅彪, 费宏明, 孙非, 刘一超. 基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测. 物理学报, 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [7] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211600
    [8] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [9] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [10] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [11] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究. 物理学报, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [12] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [13] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究. 物理学报, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [14] 何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强. 锰离子对镥基纳米晶体的荧光调控与增强. 物理学报, 2013, 62(23): 237803. doi: 10.7498/aps.62.237803
    [15] 李雪莲, 张志东, 王红艳, 熊祖洪, 张中月. 应用平行隔板增强纳米球表面电场. 物理学报, 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [16] 杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢. 微腔中CdSe量子点荧光增强效应. 物理学报, 2011, 60(11): 117803. doi: 10.7498/aps.60.117803
    [17] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
    [18] 孟庆裕, 陈宝玖, 赵晓霞, 颜 斌, 王晓君, 许 武. Ag+掺杂的立方相Y2O3:Eu纳米晶体粉末发光强度研究. 物理学报, 2006, 55(5): 2623-2627. doi: 10.7498/aps.55.2623
    [19] 刘军辉, 毛艳丽, 马文波, 吴谊群, 韩俊鹤, 翟凤潇. 一种新的芴类衍生物的三光子吸收诱导荧光和光限幅效应研究. 物理学报, 2005, 54(11): 5173-5177. doi: 10.7498/aps.54.5173
    [20] 贾惟义, 熊季午. 悬浮颗粒散射引起的荧光增强现象. 物理学报, 1983, 32(11): 1471-1473. doi: 10.7498/aps.32.1471
计量
  • 文章访问数:  5032
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-04-25
  • 上网日期:  2022-08-24
  • 刊出日期:  2022-09-05

/

返回文章
返回