搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟

钱泽宇 张林

引用本文:
Citation:

熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟

钱泽宇, 张林

Atomical simulations of structural changes of a melted TiAl alloy particle on TiAl (001) substrate

Qian Ze-Yu, Zhang Lin
PDF
导出引用
  • 采用基于嵌入原子方法的分子动力学方法模拟了附着于TiAl合金(001)面的TiAl合金纳米粒子在不同温度下的原子堆积结构演变. 在模拟中, 熔融态(1500 K)的纳米粒子先被放置在温度分别为1100, 1000, 900, …, 200和100 K的基体(001)面, 随后急冷降温至基体温度. 通过逐层分析粒子内和基体表面的原子排列情况, 发现温度主要影响粒子内的原子堆积结构. 当基体温度很高时, 粒子内除了靠近基体的几个原子层外, 其他区域内均未形成有序的原子堆积结构. 随基体温度降低, 粒子内大部分原子逐渐形成了有序的原子堆积结构, 且粒子内出现了一个以基体(001)晶面为底面、以基体[101], [101], [011], [011]晶向为轴的近四棱锥形内区域, 此区域内外的原子均呈有序排列, 但原子面的取向不同, 因而形成了明显的界面. 随基体温度进一步降低, 这个内区域仍然存在但其体积不断减小, 同时在纳米粒子顶部有越来越多的原子再次呈现无序排列, 使此内区域愈加难以辨别.
    Atomic packing structures of a melted TiAl alloy nanoparticle on TiAl(001) substrate at different temperatures are investigated by molecular dynamic simulation within the framework of embedded atom method. In order to obtain a melted TiAl alloy nanoparticle, a larger TiAl alloy bulk in nano-size is initially constructed, subsequently it is heated up to 1500 K and finally melted. A smaller sphere is extracted from the center of the melted bulk to serve as the melted nanoparticle. Periodic boundary conditions are employed in the x and y directions when constructing the sheet-like TiAl alloy substrate. In this simulation, the melted nanoparticle at 1500 K is laid on a TiAl(001) substrate, separately, at 1100, 1000, 900, …, 200 and 100 K as integral systems, and then they experience rapid solidification process. With the analysis of atomic arrangements of the nanoparticle and substrate surface layer by layer, it is found that temperature greatly affects the atomic packing structure of the nanoparticle. When the temperature of the substrate is 1100 K, most atoms in the nanoparticle disorderly pack, indicating that the nanoparticle is still melted at this temperature. At 1000 K, nearly all the atoms in the nanoparticle occupy TiAl lattice points, indicating that the nanoparticle is already solidified at this temperature. With the substrate temperature decreasing, most atoms in the nanoparticle are still of orderly pack. Meanwhile, a pyramid-like inner region, which takes TiAl(001) crystallographic plane as undersurface and TiAl [101], [101], [011], and [01 1] crystallographic axis as edges, abruptly emerges in the nanoparticle. Different atomic packing structures are observed inside and outside this region. Atomic layers composed of atoms inside this region are parallel to the (001) crystallographic plane of TiAl alloy substrate while atomic layers composed of atoms outside this region arranges along other different directions, which therefore leads to four interfaces separating the inner region from other parts of the nanoparticle. At low temperatures, this inner region still exists but its volume decreases with temperature decreasing. Besides, more and more atoms in the upper part of the nanoparticle gradually pack disorderly, which makes it more difficult to distinguish the inner region. In addition, the melted nanoparticle has very limited influences on the central and bottom parts of the substrate. However, thermal motion of atoms of substrate surface which touches the nanoparticle is intensified, thus leading to more obvious lattice distortion.
      通信作者: 张林, zhanglin@imp.neu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB606403)、国家自然科学基金(批准号: 51171044)、 辽宁省自然科学基金(批准号:2015020207)和中央高校基本科研业务费(批准号: N140504001)资助的课题.
      Corresponding author: Zhang Lin, zhanglin@imp.neu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403), the National Natural Science Foundation of China (Grant No. 51171044), the Natural Science Foundation of Liaoning Province, China (Grant No. 2015020207), and the Fundamental Research Funds for the Central Universities, China (Grant No. N140504001).
    [1]

    Yang R 2015 Acta Metall. Sin. 51 129 (in Chinese) [杨锐 2015 金属学报 51 129]

    [2]

    Liu Y, Huang B Y, Zhou K C, He Y H, Tang Z H 2001 J. Aeronaut. Mater. 21 50 (in Chinese) [刘咏, 黄伯云, 周科朝, 贺跃辉, 唐志宏 2001 航空材料学报 21 50]

    [3]

    Zhang C P, Zhang K F 2009 Mater. Sci. Engng. A 520 101

    [4]

    Bacos M P, Morel A, Naveos S, Bachelier-locq A, Josso P, Thomas M 2006 Intermetallics 14 102

    [5]

    Kong F T, Chen Z Y, Tian J, Chen Y Y 2003 Rare Metal. Mat. Eng. 32 81 (in Chinese) [孔凡涛, 陈子勇, 田竞, 陈玉勇 2003 稀有金属材料与工程 32 81]

    [6]

    Liu Z G, Chai L H, Chen Y Y, Kong F T 2008 Acta Metall. Sin. 44 569 (in Chinese) [刘志光, 柴丽华, 陈玉勇, 孔凡涛 2008 金属学报 44 569]

    [7]

    Kenel C, Leinenbach C 2015 J. Alloy. Compd. 637 242

    [8]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronaut. Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [9]

    Wang H W, Zhu D D, Zou C M, Wei Z J 2011 T. Nonferr. Metal. Soc. 21 328

    [10]

    Staron P, Bartels A, Brokmeier H G, Gerling R, Schimansky F P, Clemens H 2006 Mater. Sci. Engng. A 416 11

    [11]

    Wegmann G, Gerling R, Schimansky F P, Zhang J X 2002 Mater. Sci. Engng. A 329 99

    [12]

    Kiselev S P, Zhirov E V 2014 Intermetallics 49 106

    [13]

    Morris M A, Leboeuf M 1997 Mater. Sci. Engng. A 224 1

    [14]

    Imayev R M, Gabdullin N K, Salishchev G A, Senkov O N, Imayev Y M, Froes F H 1999 Acta Mater. 47 1809

    [15]

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104 (in Chinese) [宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104]

    [16]

    Liu Z G, Wang C Y, Yu T 2014 Chin. Phys. B 23 110208

    [17]

    Xie Z C, Gao T H, Guo X T, Qin X M, Xie Q 2014 Physica B 440 130

    [18]

    Xia J H, Liu C S, Cheng Z F, Shi D P 2011 Physica B 406 3938

    [19]

    Campo A D, Arzt E 2008 Chem. Rev. 108 911

    [20]

    Zhang C H, Lv N, Zhang X F, Saida A, Xia A G, Ye G X 2011 Chin. Phys. B 20 066103

    [21]

    Lv N, Pan Q F, Cheng Y, Yang B, Ye G X 2013 Chin. Phys. B 22 116103

    [22]

    Zhou X Y, Wu W K, He Y Z, Li Y F, Wang L, Li H 2015 Phys. Chem. Chem. Phys. 17 20658

    [23]

    Lin C P, Liu X J, Rao Z H 2015 Acta Phys. Sin. 64 083601 (in Chinese) [林长鹏, 刘新健, 饶中浩 2015 物理学报 64 083601]

    [24]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese) [徐威, 兰忠, 彭本利, 温荣福, 马学虎 2015 物理学报 64 216801]

    [25]

    Farkas D 1994 Model. Simul. Mater. Sci. Engng. 2 975

  • [1]

    Yang R 2015 Acta Metall. Sin. 51 129 (in Chinese) [杨锐 2015 金属学报 51 129]

    [2]

    Liu Y, Huang B Y, Zhou K C, He Y H, Tang Z H 2001 J. Aeronaut. Mater. 21 50 (in Chinese) [刘咏, 黄伯云, 周科朝, 贺跃辉, 唐志宏 2001 航空材料学报 21 50]

    [3]

    Zhang C P, Zhang K F 2009 Mater. Sci. Engng. A 520 101

    [4]

    Bacos M P, Morel A, Naveos S, Bachelier-locq A, Josso P, Thomas M 2006 Intermetallics 14 102

    [5]

    Kong F T, Chen Z Y, Tian J, Chen Y Y 2003 Rare Metal. Mat. Eng. 32 81 (in Chinese) [孔凡涛, 陈子勇, 田竞, 陈玉勇 2003 稀有金属材料与工程 32 81]

    [6]

    Liu Z G, Chai L H, Chen Y Y, Kong F T 2008 Acta Metall. Sin. 44 569 (in Chinese) [刘志光, 柴丽华, 陈玉勇, 孔凡涛 2008 金属学报 44 569]

    [7]

    Kenel C, Leinenbach C 2015 J. Alloy. Compd. 637 242

    [8]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronaut. Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [9]

    Wang H W, Zhu D D, Zou C M, Wei Z J 2011 T. Nonferr. Metal. Soc. 21 328

    [10]

    Staron P, Bartels A, Brokmeier H G, Gerling R, Schimansky F P, Clemens H 2006 Mater. Sci. Engng. A 416 11

    [11]

    Wegmann G, Gerling R, Schimansky F P, Zhang J X 2002 Mater. Sci. Engng. A 329 99

    [12]

    Kiselev S P, Zhirov E V 2014 Intermetallics 49 106

    [13]

    Morris M A, Leboeuf M 1997 Mater. Sci. Engng. A 224 1

    [14]

    Imayev R M, Gabdullin N K, Salishchev G A, Senkov O N, Imayev Y M, Froes F H 1999 Acta Mater. 47 1809

    [15]

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104 (in Chinese) [宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104]

    [16]

    Liu Z G, Wang C Y, Yu T 2014 Chin. Phys. B 23 110208

    [17]

    Xie Z C, Gao T H, Guo X T, Qin X M, Xie Q 2014 Physica B 440 130

    [18]

    Xia J H, Liu C S, Cheng Z F, Shi D P 2011 Physica B 406 3938

    [19]

    Campo A D, Arzt E 2008 Chem. Rev. 108 911

    [20]

    Zhang C H, Lv N, Zhang X F, Saida A, Xia A G, Ye G X 2011 Chin. Phys. B 20 066103

    [21]

    Lv N, Pan Q F, Cheng Y, Yang B, Ye G X 2013 Chin. Phys. B 22 116103

    [22]

    Zhou X Y, Wu W K, He Y Z, Li Y F, Wang L, Li H 2015 Phys. Chem. Chem. Phys. 17 20658

    [23]

    Lin C P, Liu X J, Rao Z H 2015 Acta Phys. Sin. 64 083601 (in Chinese) [林长鹏, 刘新健, 饶中浩 2015 物理学报 64 083601]

    [24]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese) [徐威, 兰忠, 彭本利, 温荣福, 马学虎 2015 物理学报 64 216801]

    [25]

    Farkas D 1994 Model. Simul. Mater. Sci. Engng. 2 975

  • [1] 李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞. Ti3Al合金凝固过程晶核形成及演变过程的模拟研究. 物理学报, 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [2] 王亚明, 刘永利, 张林. Ti纳米粒子熔化与凝结的原子尺度模拟. 物理学报, 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [3] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] 汪志刚, 黄娆, 文玉华. Pt-Au核-壳结构纳米粒子热稳定性的分子动力学研究. 物理学报, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [6] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究. 物理学报, 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [7] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [8] 邵琛玮, 王振华, 李艳男, 赵骞, 张林. AuCu249合金团簇热稳定性的原子尺度计算研究. 物理学报, 2011, 60(8): 083602. doi: 10.7498/aps.60.083602
    [9] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [10] 宋成粉, 樊沁娜, 李蔚, 刘永利, 张林. TiAl合金薄膜在冷却过程中结构变化的原子尺度计算研究. 物理学报, 2011, 60(6): 063104. doi: 10.7498/aps.60.063104
    [11] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [12] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [13] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [14] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [15] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [16] 田惠忱, 刘丽, 文玉华. 立方铂纳米粒子的形状变化与熔化特性的分子动力学研究. 物理学报, 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [17] 王狂飞, 李邦盛, 任明星, 米国发, 郭景杰, 傅恒志. Ti-44at%Al合金小尺寸铸件柱状晶/等轴晶演化过程模拟. 物理学报, 2007, 56(6): 3337-3343. doi: 10.7498/aps.56.3337
    [18] 刘让苏, 覃树萍, 侯兆阳, 陈晓莹, 刘凤翔. 液态金属In凝固过程中微观结构转变的模拟研究. 物理学报, 2004, 53(9): 3119-3124. doi: 10.7498/aps.53.3119
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  2699
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-26
  • 修回日期:  2015-09-27
  • 刊出日期:  2015-12-05

熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟

  • 1. 东北大学理学院, 材料物理与化学研究所, 沈阳 110004
  • 通信作者: 张林, zhanglin@imp.neu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号: 2011CB606403)、国家自然科学基金(批准号: 51171044)、 辽宁省自然科学基金(批准号:2015020207)和中央高校基本科研业务费(批准号: N140504001)资助的课题.

摘要: 采用基于嵌入原子方法的分子动力学方法模拟了附着于TiAl合金(001)面的TiAl合金纳米粒子在不同温度下的原子堆积结构演变. 在模拟中, 熔融态(1500 K)的纳米粒子先被放置在温度分别为1100, 1000, 900, …, 200和100 K的基体(001)面, 随后急冷降温至基体温度. 通过逐层分析粒子内和基体表面的原子排列情况, 发现温度主要影响粒子内的原子堆积结构. 当基体温度很高时, 粒子内除了靠近基体的几个原子层外, 其他区域内均未形成有序的原子堆积结构. 随基体温度降低, 粒子内大部分原子逐渐形成了有序的原子堆积结构, 且粒子内出现了一个以基体(001)晶面为底面、以基体[101], [101], [011], [011]晶向为轴的近四棱锥形内区域, 此区域内外的原子均呈有序排列, 但原子面的取向不同, 因而形成了明显的界面. 随基体温度进一步降低, 这个内区域仍然存在但其体积不断减小, 同时在纳米粒子顶部有越来越多的原子再次呈现无序排列, 使此内区域愈加难以辨别.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回