搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙尘湍流大气对自由空间量子通信性能影响研究

杨瑞科 李福军 武福平 卢芳 魏兵 周晔

引用本文:
Citation:

沙尘湍流大气对自由空间量子通信性能影响研究

杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔

Influence of sand and dust turbulent atmosphere on performance of free space quantum communication

Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye
PDF
HTML
导出引用
  • 量子通信是当前国内外研究的前沿热点领域, 具有理想的信息安全性. 为了使干旱和沙漠化地区的量子系统能够几乎全天候的工作, 必须开展沙尘湍流大气对自由空间量子信号传输衰减及对通信性能影响的研究. 应用米氏散射理论、多重散射模拟方法和大气湍流理论, 研究了不同能见度的沙尘湍流大气信道中光波传输的衰减, 及多重散射和湍流对衰减的影响, 表明随能见度的降低多重散射影响增大, 随着距离的增加湍流效应逐渐加强. 基于量子幅值阻尼信道模型, 分析了不同能见度沙尘湍流大气中的多重散射和湍流对量子信道容量、保真度、误码率的影响. 结果表明, 随着能见度降低, 多重散射效应增强, 使衰减和误码率有所减小, 而信道容量、保真度和安全密钥率的边界有所增加. 沙尘大气中湍流的存在, 又会使衰减和误码率增大, 而信道容量、保真度和安全密钥率会减小. 由此可见, 沙尘大气能见度较低时的多重散射和湍流对通信性能的影响不可忽略, 在实际应用中应根据能见度和湍流强度自适应地调节量子通信相关参数, 以提高量子通信的概率和可靠性.
    Quantum communication is a frontier hotspot of current research, and it has ideal information security. In order to enable quantum systems in arid and desertified areas to work almost under all-weather condition, it is necessary to study the attenuation of free-space quantum signal transmission and the influence of the turbulence atmosphere carrying sand and dust on communication performance. Using Mie scattering theory, multiple scattering simulation method, and atmospheric turbulence theory, the attenuation of optical wave transmission in sand and dust turbulent atmospheric channels with different visibility, and the influence of multiple scattering and turbulence on attenuation are studied. The results show that the effect of multiple scattering increases with the decrease of visibility, the turbulence effect gradually strengthens with the increase of distance. According to the quantum amplitude damped channel model, the effects of multiple scattering and turbulence in the sand and dust turbulent atmosphere with different visibility on the quantum channel capacity, fidelity and bit error rate are analyzed. The results show that as the visibility decreases, the multiple scattering effect increases, resulting in the decrease of attenuation and bit error rate, but an increase in channel capacity, fidelity and the boundaries of security key rate. The existence of turbulence in the dust atmosphere will increase the attenuation and bit error rate, but reduce the channel capacity, fidelity and security key rate. It can be seen that the influence of multiple scattering and turbulence on the communication performance, when the visibility of the sand and dust atmosphere are both low, cannot be ignored. In practical applications, the relevant parameters of quantum communication should be adaptively adjusted according to the visibility and turbulence intensity to improve the probability, efficiency and reliability of quantum communication.
      通信作者: 杨瑞科, yrk18687@163.com
    • 基金项目: 陕西省自然科学基础研究计划资助项目(项目编号: 2021JM-127)、高等学校学科创新引智计划资助(111)和中国航空工业集团公司雷华电子技术研究所(批准号: 2018610103002381)课题资助.
      Corresponding author: Yang Rui-Ke, yrk18687@163.com
    • Funds: Supported by the Natural Science Basic Research Program of Shaanxi, China (Program No. 2021 JM-127), the 111 Project, and the Lei Hua Institute of Electronic Technology of Aviation Industry Corporation of China (No. 2018610103002381).
    [1]

    曹原 2012 博士学位论文 (合肥: 中国科学技术大学) 第3—5页

    Cao T 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) pp3–5 (in Chinese)

    [2]

    Villoresi P, Jennewein T, Tamburini F, Aspelmeyer M, Bonato C, Ursin R, Pernechele C, Luceri V, Bianco G, Zeilinger A, Barbieri C 2008 New J. Phys. 10 033038Google Scholar

    [3]

    Jin X M, Ren J G, Yang B, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 6Google Scholar

    [4]

    Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A, Pan J W 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 580 7813

    [6]

    聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 110301Google Scholar

    Nie M, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 110301Google Scholar

    [7]

    聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303Google Scholar

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303Google Scholar

    [8]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301Google Scholar

    Nie M, Wang X C, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301Google Scholar

    [9]

    聂敏, 高锟, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0701001Google Scholar

    Nie M, Gao K, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0701001Google Scholar

    [10]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 0727001Google Scholar

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Opt. Sin. 40 0727001Google Scholar

    [11]

    张秀再, 翟梦思, 周丽娟 2021 光学学报 40 1127001Google Scholar

    Zhang X Z, Zhai M S, Zhou L J 2021 Acta Opt. Sin. 40 1127001Google Scholar

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    刘涛, 朱聪, 孙春阳, 房新新, 王平平 2020 光学学报 40 0227001Google Scholar

    Liu T, Zhu C, Sun C Y, Fang X X, Wang P P 2020 Acta Opt. Sin. 40 0227001Google Scholar

    [15]

    Roux F S. 2011 Phy. Rev. A 83 053822Google Scholar

    [16]

    Vasylyev D, Semenov A A, Vogel W 2016 Phys. Rev. Lett. 117 090501Google Scholar

    [17]

    Pirandola S 2021 Phys. Rev. Res. 3 013279

    [18]

    杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205Google Scholar

    [19]

    李曙光, 刘晓东, 侯蓝田, 张焕平 2003 应用激光 23 1000Google Scholar

    Li S G, Liu X D, Hou L T, Zhang H P 2003 Appl. Laser 23 1000Google Scholar

    [20]

    杨瑞科, 朱传帅, 刘科祥 2017 红外与激光工程 46 0104006Google Scholar

    Yang R K, Zhu C S, Liu K X 2017 Infrared Laser Eng. 46 0104006Google Scholar

    [21]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [22]

    王红霞, 孙红辉, 张清华 2020 红外与激光工程 49 20201022Google Scholar

    Wang H X, Sun H H, Zhang Q H 2020 Infrared Laser Eng. 49 20201022Google Scholar

    [23]

    Li X, Hai C Z, Zhi X D, Jun Z 2020 J. Quant. Spectrosc. Radiat. Transfer 241 106744Google Scholar

    [24]

    刘邦宇, 张秀再, 徐茜 2020 光学学报 40 0327001Google Scholar

    Liu B Y, Zhang X Z, Xu Q, 2020 Acta Opt. Sin. 40 0327001Google Scholar

    [25]

    尹浩, 韩阳 2013 量子通信原理与技术 (第1版) (北京: 电子工业出版社) 第76—83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (1st Ed.) (Beijing: Electronics Industry Publishing) pp76–83 (in Chinese)

    [26]

    尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第227页

    Yin H, Ma H X 2006 Introduction to Military Quantum Communication (Beijing: Military Science Press) p227 (in Chinese)

    [27]

    裴昌幸, 朱畅华, 聂敏, 阎毅, 权东晓 2013 量子通信 (西安: 西安电子科技大学出版社) 第119—120页

    Pei C X, Zhu C H, Nie M, Yan Y, Quan D X 2013 Quantum Communication pp119–120 (Xi'an: Xidian University Press) (in Chinese)

    [28]

    张光宇, 于思源, 马晶, 谭立英 2007 光电工程 34 126Google Scholar

    Zhang G Y, Yu S Y, Ma J, Tan L Y 2007 Opto-Electron. Eng. 34 126Google Scholar

    [29]

    闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834Google Scholar

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834Google Scholar

    [30]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [31]

    马晶, 张光宇, 谭立英 2006 光学技术 32 101Google Scholar

    Ma J, Zhang G Y, Tan L Y 2006 Opt. Tech. 32 101Google Scholar

    [32]

    刘敦伟, 马喆 2021 量子通信理论与技术 (北京: 北京航空航天大学出版社) 第110页

    Liu D W, Ma Z 2021 Quantum Communication Theory and Technology (Beijing: Beihang University Press) p110 (in Chinese)

  • 图 1  光子位置和方向坐标图

    Fig. 1.  Coordinate diagram of photon position and direction.

    图 2  考虑多重散射的沙尘湍流大气链路衰减随能见度与距离的变化 (a) 单次散射无湍流链路衰减; (b) 单次散射有湍流链路衰减; (c) 多重散射无湍流链路衰减; (d) 多重散射有湍流链路衰减

    Fig. 2.  Variation of the attenuation on sand and dust turbulent atmospheric link with visibility and distance considering multiple scattering: (a) Attenuation with single scattering without turbulent; (b) attenuation with single scattering and turbulent; (c) attenuation with multiple scattering without turbulent; (d) attenuation with multiple scattering and turbulent.

    图 3  沙尘湍流大气下的信道容量与能见度与传输距离的关系 (a) 单次散射无湍流容量; (b) 单次散射有湍流容量; (c) 多重散射无湍流容量; (d) 多重散射有湍流容量

    Fig. 3.  Variation of the channel capacity on sand and dust turbulent atmospheric with visibility and distance: (a) Capacity with single scattering without turbulent; (b) capacity with single scattering and turbulent; (c) capacity with multiple scattering without turbulent; (d) capacity with multiple scattering and turbulent.

    图 4  沙尘湍流大气下保真度与能见度、传输距离的关系 (a) 单次散射无湍流保真度; (b) 单次散射有湍流保真度; (c) 多重散射无湍流保真度; (d) 多重散射有湍流保真度

    Fig. 4.  Variation of the fidelity on sand and dust turbulent atmospheric with visibility and distance: (a) Fidelity with single scattering without turbulent; (b) fidelity with single scattering and turbulent; (c) fidelity with multiple scattering without turbulent; (d) fidelity with multiple scattering and turbulent.

    图 5  沙尘湍流大气下的误码率与能见度与传输距离的关系 (a) 单次散射无湍流误码率; (b) 单次散射有湍流误码率; (c) 多重散射无湍流误码率; (d) 多重散射有湍流误码率

    Fig. 5.  Variation of the BER on sand and dust turbulent atmospheric with visibility and distance: (a) BER with single scattering without turbulent; (b) BER with single scattering and turbulent; (c) BER with multiple scattering without turbulent; (d) BER with multiple scattering and turbulent.

    图 6  不同能见度沙尘湍流大气的安全密钥率上界随距离的变化 (a) 无湍流; (b) 有湍流

    Fig. 6.  Variation of the upper bound of the security key rate with distance in sand and dust turbulent atmosphere with different visibility: (a) Without turbulence; (b) with turbulence.

  • [1]

    曹原 2012 博士学位论文 (合肥: 中国科学技术大学) 第3—5页

    Cao T 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) pp3–5 (in Chinese)

    [2]

    Villoresi P, Jennewein T, Tamburini F, Aspelmeyer M, Bonato C, Ursin R, Pernechele C, Luceri V, Bianco G, Zeilinger A, Barbieri C 2008 New J. Phys. 10 033038Google Scholar

    [3]

    Jin X M, Ren J G, Yang B, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 6Google Scholar

    [4]

    Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A, Pan J W 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 580 7813

    [6]

    聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 110301Google Scholar

    Nie M, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 110301Google Scholar

    [7]

    聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303Google Scholar

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303Google Scholar

    [8]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301Google Scholar

    Nie M, Wang X C, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301Google Scholar

    [9]

    聂敏, 高锟, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0701001Google Scholar

    Nie M, Gao K, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0701001Google Scholar

    [10]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 0727001Google Scholar

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Opt. Sin. 40 0727001Google Scholar

    [11]

    张秀再, 翟梦思, 周丽娟 2021 光学学报 40 1127001Google Scholar

    Zhang X Z, Zhai M S, Zhou L J 2021 Acta Opt. Sin. 40 1127001Google Scholar

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    刘涛, 朱聪, 孙春阳, 房新新, 王平平 2020 光学学报 40 0227001Google Scholar

    Liu T, Zhu C, Sun C Y, Fang X X, Wang P P 2020 Acta Opt. Sin. 40 0227001Google Scholar

    [15]

    Roux F S. 2011 Phy. Rev. A 83 053822Google Scholar

    [16]

    Vasylyev D, Semenov A A, Vogel W 2016 Phys. Rev. Lett. 117 090501Google Scholar

    [17]

    Pirandola S 2021 Phys. Rev. Res. 3 013279

    [18]

    杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205Google Scholar

    [19]

    李曙光, 刘晓东, 侯蓝田, 张焕平 2003 应用激光 23 1000Google Scholar

    Li S G, Liu X D, Hou L T, Zhang H P 2003 Appl. Laser 23 1000Google Scholar

    [20]

    杨瑞科, 朱传帅, 刘科祥 2017 红外与激光工程 46 0104006Google Scholar

    Yang R K, Zhu C S, Liu K X 2017 Infrared Laser Eng. 46 0104006Google Scholar

    [21]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [22]

    王红霞, 孙红辉, 张清华 2020 红外与激光工程 49 20201022Google Scholar

    Wang H X, Sun H H, Zhang Q H 2020 Infrared Laser Eng. 49 20201022Google Scholar

    [23]

    Li X, Hai C Z, Zhi X D, Jun Z 2020 J. Quant. Spectrosc. Radiat. Transfer 241 106744Google Scholar

    [24]

    刘邦宇, 张秀再, 徐茜 2020 光学学报 40 0327001Google Scholar

    Liu B Y, Zhang X Z, Xu Q, 2020 Acta Opt. Sin. 40 0327001Google Scholar

    [25]

    尹浩, 韩阳 2013 量子通信原理与技术 (第1版) (北京: 电子工业出版社) 第76—83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (1st Ed.) (Beijing: Electronics Industry Publishing) pp76–83 (in Chinese)

    [26]

    尹浩, 马怀新 2006 军事量子通信概论 (北京: 军事科学出版社) 第227页

    Yin H, Ma H X 2006 Introduction to Military Quantum Communication (Beijing: Military Science Press) p227 (in Chinese)

    [27]

    裴昌幸, 朱畅华, 聂敏, 阎毅, 权东晓 2013 量子通信 (西安: 西安电子科技大学出版社) 第119—120页

    Pei C X, Zhu C H, Nie M, Yan Y, Quan D X 2013 Quantum Communication pp119–120 (Xi'an: Xidian University Press) (in Chinese)

    [28]

    张光宇, 于思源, 马晶, 谭立英 2007 光电工程 34 126Google Scholar

    Zhang G Y, Yu S Y, Ma J, Tan L Y 2007 Opto-Electron. Eng. 34 126Google Scholar

    [29]

    闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834Google Scholar

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834Google Scholar

    [30]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [31]

    马晶, 张光宇, 谭立英 2006 光学技术 32 101Google Scholar

    Ma J, Zhang G Y, Tan L Y 2006 Opt. Tech. 32 101Google Scholar

    [32]

    刘敦伟, 马喆 2021 量子通信理论与技术 (北京: 北京航空航天大学出版社) 第110页

    Liu D W, Ma Z 2021 Quantum Communication Theory and Technology (Beijing: Beihang University Press) p110 (in Chinese)

  • [1] 杨瑞科, 王甲乐. 带电沙尘大气对微波量子照明雷达性能的影响. 物理学报, 2024, 73(17): 170302. doi: 10.7498/aps.73.20240802
    [2] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [3] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [4] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [6] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [7] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减. 物理学报, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [8] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析. 物理学报, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [9] 李熙涵. 量子直接通信. 物理学报, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [11] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真. 物理学报, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [12] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究. 物理学报, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [13] 李申, 马海强, 吴令安, 翟光杰. 全光纤量子通信系统中的高速偏振控制方案. 物理学报, 2013, 62(8): 084214. doi: 10.7498/aps.62.084214
    [14] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [15] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [16] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信. 物理学报, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [17] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [18] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 物理学报, 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [19] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [20] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
计量
  • 文章访问数:  4267
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-07-24
  • 上网日期:  2022-11-14
  • 刊出日期:  2022-11-20

/

返回文章
返回