搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单光子双量子态的确定性安全量子通信

危语嫣 高子凯 王思颖 朱雅静 李涛

引用本文:
Citation:

基于单光子双量子态的确定性安全量子通信

危语嫣, 高子凯, 王思颖, 朱雅静, 李涛

Deterministic secure quantum communication with double-encoded single photons

Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao
PDF
HTML
导出引用
  • 量子通信是量子科学技术的一个重要研究领域, 是一种利用量子力学原理, 能够在合法各方之间安全地传输私密信息的通信方式. 基于单光子的确定性安全量子通信通常需要在发送方和接收方之间来回两次传输单光子态, 并利用局域幺正变换加载信息. 本文提出了一种单向传输单光子态的确定性安全量子通信方案. 发送方利用单光子的极化和time-bin两自由度构成的两组共轭基矢量来编码经典逻辑比特. 接收方通过设计合适的测量装置可以在发送方辅助下确定性地获取比特信息并感知窃听, 从而实现信息的确定性安全传输. 另外, 我们的协议使用线性光学元件和单光子探测器, 可以在当前的量子通信装置上实现.
    Quantum communication is an important branch of quantum technology. It can safely transmit private information between legitimate parties and its unconditional security is guaranteed by quantum physics. So far, deterministic secure quantum communication without entanglement usually transmits single photons in two-way quantum channels. We propose a deterministic secure quantum communication proposal, and it requires a one-way quantum channel and a classical channel. In our protocol, a sender encodes logical bits by using two conjugate bases consisting of the polarization and time-bin degrees of freedom of a photon and transmits it to a receiver over a quantum channel. Upon receiving this photon, the receiver measures it randomly in two bases and can decode the bit deterministically with the help of the sender. Any attack from eavesdroppers will be detected by the legitimate parties. Furthermore, this protocol can be implemented with linear-optic elements and single-photon detectors.
      通信作者: 李涛, tao.li@njust.edu.cn
    • 基金项目: 江苏省自然科学基金 (批准号: BK20180461) 和国家自然科学基金 (批准号: 11914171) 资助的课题
      Corresponding author: Li Tao, tao.li@njust.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180461) and the National Natural Science Foundation of China (Grant No. 11914171)
    [1]

    Wehner S, Elkouss D, Hanso R 2018 Science 362 eaam9288Google Scholar

    [2]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing Bangalore, India, December 10–12, 1984 p175

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar

    [5]

    Guo P L, Dong C, He Y, Jing F, He W T, Ren B C, Li C Y, Deng F G 2020 Opt. Express 28 4611Google Scholar

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [7]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [9]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [10]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305Google Scholar

    [11]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144Google Scholar

    [12]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [13]

    Li T, Gao Z K, Li Z H 2020 EPL 131 60001Google Scholar

    [14]

    Gao Z K, Li T, Li Z H 2019 EPL 125 40004Google Scholar

    [15]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [16]

    Karlsson A, Koashi M, Imoto N 1999 Phys Rev. A 59 162Google Scholar

    [17]

    邓富国, 李熙涵, 李涛 2018 物理学报 67 130301Google Scholar

    Deng F G, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [18]

    Gao Z K, Li T, Li Z H 2020 Sci. Chin. -Phys. Mech. Astron. 63 120311Google Scholar

    [19]

    Shimizu K, Imoto Y 1999 Phys. Rev. A 60 157Google Scholar

    [20]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [21]

    Cai Q Y, Li B W 2004 Chin. Phys. Lett. 21 601Google Scholar

    [22]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar

    [23]

    Long G L, Deng F G, Wang C, Li X H, Wen K, Wang W Y 2007 Front. Phys. Chin. 2 251

    [24]

    Li T, Long G L 2020 New J. Phys. 22 063017Google Scholar

    [25]

    王明宇, 王馨德, 阮东, 龙桂鲁 2021 物理学报 70 190301Google Scholar

    Wang M Y, Wang X D, Ruan D, Long G L 2021 Acta Phys. Sin. 70 190301Google Scholar

    [26]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [27]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501Google Scholar

    [28]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301Google Scholar

    [29]

    Gao T, Yan F L, Wang Z X 2005 J. Phys. A:Gen. Phys. 38 5761Google Scholar

    [30]

    Elsayed T A 2020 Phys. Scr. 96 025101Google Scholar

    [31]

    Jeong Y C, Ji S W, Hong C, Park H S, Jang J 2020 Entropy 22 1268Google Scholar

    [32]

    Jiang D, Chen Y, Gu X, Xie L, Chen L 2017 Sci. Rep. 7 44934Google Scholar

    [33]

    Wang J D, Wei Z J, Zhang H, Qin X J, Liu X B, Zhang Z M, Liao C J, Liu S H 2010 J. Phys. B:At. Mol. Opt. Phys. 43 095504Google Scholar

    [34]

    Lu H, Fung C, Ma X, Cai QY 2011 Phys. Rev. A 84 042344Google Scholar

    [35]

    Beaudry N J, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062302Google Scholar

    [36]

    Henao C I, Serra R M 2015 Phys. Rev. A 92 052317Google Scholar

    [37]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [38]

    Meyer-Scott E, Silberhorn C, Migdall A 2020 Rev. Sci. Instrum. 91 041101Google Scholar

    [39]

    Kaneda F, Kwiat P G 2019 Sci. Adv. 5 eaaw8586Google Scholar

    [40]

    Hall M A, Altepeter J B, Kumar P 2011 Phys. Rev. Lett. 106 053901Google Scholar

    [41]

    Cao Y, Liang H, Yin J, Yong H L, Zhou F, Wu Y P, Ren J G, Li Y H, Pan G S, Yang T, Ma X, Peng C Z, Pan J W 2013 Opt. Express 21 27260Google Scholar

    [42]

    Wang H, Li W, Jiang X, He Y M, Li Y H, Ding X, Chen M C, Qin J, Peng C Z, Schneider C, Kamp M, Zhang W J, Li H, You L X, Wang Z, Dowling J P, Höfling S, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 230502Google Scholar

    [43]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46Google Scholar

    [44]

    Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar

    [45]

    郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪 2013 物理学报 62 130303Google Scholar

    Guo B H, Yang L, Xiang C, Guan C, Wu L A, Liu S H 2013 Acta Phys. Sin. 62 130303Google Scholar

  • 图 1  量子逻辑比特制备示意图. HWP: 半波片, 光轴与水平方向的夹角$ \theta = 0 $, 穿过它的光子极化状态保持不变, $ \theta = $$ {\text{π}}/4 $, 对穿过它的光子执行以下操作: $\left| H \right\rangle \to \left| V \right\rangle, \;\left| V \right\rangle \to $$ \left| H \right\rangle$; $ {\text{SW}}i \left( {i = 1, \;2, \;3} \right) $: 开关, 处于T状态时, 光子直接透过器件, 处于R状态时, 光子将被反射; H1: 光轴角度为$ {\text{π}}/8 $的半波片, 对经过的光子进行以下操作: $\left| H \right\rangle \to \left| + \right\rangle, \left| V \right\rangle \to $$ \left| - \right\rangle$; $ {{{\rm{PBS1}}, \;{\rm{PBS2}}}} $: 极化分束器, 将透射$ \left| + \right\rangle $光子, 反射$ \left| - \right\rangle $光子; PM: 相位调制器, 产生$ \varphi = 0 $$ \varphi = {\text{π}} $的相位差; BS1: 50∶50分束器

    Fig. 1.  Schematics of quantum logic qubit preparation. HWP: half wave plate with its axis aligned at $ \theta = 0 $($\theta = $$ {\text{π}}/4$) completes the transformations $ |H\rangle \to |H\rangle, |V\rangle \to |V\rangle $ ($ |H\rangle \to |V\rangle, |V\rangle \to |H\rangle $); $ {\text{SW}}i \left( {i = 1, \;2, \;3} \right) $: optical switch transmits (reflects) photons when it is set to modeT(R); H1 with its axis aligned at $ {\text{π}}/8 $completes the following transmissions: $ |H\rangle \to |+\rangle, |V\rangle \to |-\rangle $; $ {\text{PBS1}}\;{\text{and}}\;{\text{PBS2}} $: polarizing beam splitters that transmit (reflect) photons in state $ \left| + \right\rangle $($ \left| - \right\rangle $); PM: a phase modulator which introduces a phase $\varphi =0$ or $\varphi ={{ {\text{π}} }}$; BS1 : 50∶50 beam splitter.

    图 2  量子逻辑比特解码示意图. BS2: 50:50分束器; SW4: 开关, 透射$ {t_1} $模式的光子, 反射$ {t_0} $模式的光子; ${\rm{PBS3}}, \; {\rm{PBS4}}, $$ \;{\rm{PBS5}}, \;{\rm{PBS6}}$: 极化分束器($ {{{\rm{PBS3}}, \;{\rm{PBS4}}}} $透射$ \left| H \right\rangle $光子, 反射$ \left| V \right\rangle $光子, $ {{{\rm{PBS5}}, \;{\rm{PBS6}}}} $透射$ \left| {{ + }} \right\rangle $光子, 反射$ \left| - \right\rangle $光子); HWPS: 半波片, 将对光子进行如下操作: $ \left| H \right\rangle \to \left| V \right\rangle $, $ \left| V \right\rangle \to - \left| H \right\rangle $, $ \left| + \right\rangle \to \left| - \right\rangle $, $ \left| - \right\rangle \to - \left| + \right\rangle $; $ {\text{H2}}, \;{\rm{H3}} $: 光轴角度为$ {{{\text{π}} /8}} $的半波片, 对经过的光子进行以下操作: $ \left| H \right\rangle \to \left| + \right\rangle, \;\left| V \right\rangle \to \left| - \right\rangle $; ${{\rm{D}}_i}(i = 1, \cdots, 6)$: 单光子探测器.

    Fig. 2.  Schematics of quantum logic qubit measurement. BS2: 50:50 beam splitter; SW4: switch transmits photons in $ {t_1} $ mode and reflects photons in $ {t_0} $ mode; ${\text{PBS3}}, \;{\text{PBS4}}, $$ \; {\text{PBS5}} \;{\text{and}}\;{\text{PBS6}}$: polarizing beam splitters. PBS3 and PBS4 transmit (reflect) photons in state $ \left| H \right\rangle $($ \left| V \right\rangle $). $ {\text{PBS5}}\;{\text{and}}\;{\text{PBS6}} $ transmit (reflect) photons in state $ \left| + \right\rangle $($ \left| - \right\rangle $). HWPS: half wave plate transforms the polarization of a photon passing it as follows:$ |H\rangle \to |V\rangle, |V\rangle \to -|H\rangle$, $ |+\rangle \to |-\rangle, |-\rangle \to -|+\rangle $. $ {\text{H2}}\;{\text{and}}\;{\text{H3}} $ with their axes aligned at $ {\text{π}}/8 $complete the following transmissions:$ |H\rangle \to |+\rangle, |V\rangle \to |-\rangle $.${{\rm{D}}_i}\;(i = 1,\cdots, 6)$: single-photon detectors.

    表 1  四种单光子态对应的探测器响应情况

    Table 1.  Clicks of detectors for four different single-photon states.

    量子态下路径右路径
    $ \left| {H{t_{{ + }}}} \right\rangle $$ {D_1}\left( {{t_0}} \right)/{D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right)/{D_6}\left( {{t_1}} \right) $
    $ \left| {V{t_ - }} \right\rangle $$ {D_2}\left( {{t_0}} \right)/{D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right)/{D_5}\left( {{t_1}} \right) $
    $ \left| { + {t_0}} \right\rangle $$ {D_1}\left( {{t_0}} \right)/{D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right)/{D_6}\left( {{t_1}} \right) $
    $ \left| { - {t_0}} \right\rangle $$ {D_1}\left( {{t_1}} \right)/{D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right)/{D_4}\left( {{t_1}} \right) $
    下载: 导出CSV

    表 2  Bob探测器响应的可能情况

    Table 2.  Click probability of Bob’s detectors.

    响应$ {D_1}\left( {{t_0}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率$ {1}/{4} $$ {1}/{4} $$ {1}/{4} $$ {1}/{4} $
    下载: 导出CSV

    表 3  Eve制备的光子态及概率

    Table 3.  State and probability of photons prepared by Eve.

    光子态$ \left| {H{t_ + }} \right\rangle $$ \left| { + {t_0}} \right\rangle $$ \left| { - {t_1}} \right\rangle $
    概率$ {1}/{2} $$ {1}/{4} $$ {1}/{4} $
    下载: 导出CSV

    表 4  Eve制备的光子引起的探测器响应的可能情况

    Table 4.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_1}\left( {{t_0}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_5}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    下载: 导出CSV

    表 5  Bob探测器响应的可能情况

    Table 5.  Click probability of Bob’s detectors.

    响应$ {D_2}\left( {{t_0}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_5}\left( {{t_1}} \right) $
    概率$1/{4}$$1/{4}$$1/{4}$$1/{4}$
    下载: 导出CSV

    表 6  Eve制备的光子态及概率

    Table 6.  State and probability of photons prepared by Eve.

    光子态$ \left| {V{t_ - }} \right\rangle $$ \left| { + {t_0}} \right\rangle $$ \left| { - {t_1}} \right\rangle $
    概率$1/{2}$$1/{4}$$1/{4}$
    下载: 导出CSV

    表 7  Eve制备的光子引起的探测器响应的可能情况

    Table 7.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_2}\left( {{t_0}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_1}\left( {{t_0}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    下载: 导出CSV

    表 8  Bob探测器响应的可能情况

    Table 8.  Click probability of Bob’s detectors.

    响应$ {D_1}\left( {{t_0}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率${1}/{4}$${1}/{4}$${1}/{4}$${1}/{4}$
    下载: 导出CSV

    表 9  Eve制备的光子态及概率

    Table 9.  State and probability of photons prepared by Eve.

    光子态$ \left| { + {t_0}} \right\rangle $$ \left| {H{t_ + }} \right\rangle $$ \left| {V{t_ - }} \right\rangle $
    概率${1}/{2}$${1}/{4}$${1}/{4}$
    下载: 导出CSV

    表 10  Eve制备的光子引起的探测器响应的可能情况

    Table 10.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_1}\left( {{t_0}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $$ {D_1}\left( {{t_1}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    下载: 导出CSV

    表 11  Bob探测器响应的可能情况

    Table 11.  Click probability of Bob’s detectors.

    响应$ {D_1}\left( {{t_1}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $
    概率$1/{4}$$1/{4}$$1/{4}$$1/{4}$
    下载: 导出CSV

    表 12  Eve制备的光子态及概率

    Table 12.  State and probability of photons prepared by Eve.

    光子态$ \left| { - {t_1}} \right\rangle $$ \left| {H{t_ + }} \right\rangle $$ \left| {V{t_ - }} \right\rangle $
    概率$1/{2}$$1/{4}$$1/{4}$
    下载: 导出CSV

    表 13  Eve制备的光子引起的探测器响应的可能情况

    Table 13.  Click and probability of detectors triggered by Eve’s photon.

    探测器响应$ {D_1}\left( {{t_1}} \right) $$ {D_2}\left( {{t_1}} \right) $$ {D_3}\left( {{t_1}} \right) $$ {D_4}\left( {{t_1}} \right) $$ {D_1}\left( {{t_0}} \right) $$ {D_2}\left( {{t_0}} \right) $$ {D_5}\left( {{t_1}} \right) $$ {D_6}\left( {{t_1}} \right) $
    概率$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {3}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $$ {1}/{{16}} $
    下载: 导出CSV
  • [1]

    Wehner S, Elkouss D, Hanso R 2018 Science 362 eaam9288Google Scholar

    [2]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing Bangalore, India, December 10–12, 1984 p175

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar

    [5]

    Guo P L, Dong C, He Y, Jing F, He W T, Ren B C, Li C Y, Deng F G 2020 Opt. Express 28 4611Google Scholar

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [7]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [9]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [10]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305Google Scholar

    [11]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144Google Scholar

    [12]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [13]

    Li T, Gao Z K, Li Z H 2020 EPL 131 60001Google Scholar

    [14]

    Gao Z K, Li T, Li Z H 2019 EPL 125 40004Google Scholar

    [15]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [16]

    Karlsson A, Koashi M, Imoto N 1999 Phys Rev. A 59 162Google Scholar

    [17]

    邓富国, 李熙涵, 李涛 2018 物理学报 67 130301Google Scholar

    Deng F G, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [18]

    Gao Z K, Li T, Li Z H 2020 Sci. Chin. -Phys. Mech. Astron. 63 120311Google Scholar

    [19]

    Shimizu K, Imoto Y 1999 Phys. Rev. A 60 157Google Scholar

    [20]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [21]

    Cai Q Y, Li B W 2004 Chin. Phys. Lett. 21 601Google Scholar

    [22]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar

    [23]

    Long G L, Deng F G, Wang C, Li X H, Wen K, Wang W Y 2007 Front. Phys. Chin. 2 251

    [24]

    Li T, Long G L 2020 New J. Phys. 22 063017Google Scholar

    [25]

    王明宇, 王馨德, 阮东, 龙桂鲁 2021 物理学报 70 190301Google Scholar

    Wang M Y, Wang X D, Ruan D, Long G L 2021 Acta Phys. Sin. 70 190301Google Scholar

    [26]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [27]

    Lucamarini M, Mancini S 2005 Phys. Rev. Lett. 94 140501Google Scholar

    [28]

    Cai Q Y, Li B W 2004 Phys. Rev. A 69 054301Google Scholar

    [29]

    Gao T, Yan F L, Wang Z X 2005 J. Phys. A:Gen. Phys. 38 5761Google Scholar

    [30]

    Elsayed T A 2020 Phys. Scr. 96 025101Google Scholar

    [31]

    Jeong Y C, Ji S W, Hong C, Park H S, Jang J 2020 Entropy 22 1268Google Scholar

    [32]

    Jiang D, Chen Y, Gu X, Xie L, Chen L 2017 Sci. Rep. 7 44934Google Scholar

    [33]

    Wang J D, Wei Z J, Zhang H, Qin X J, Liu X B, Zhang Z M, Liao C J, Liu S H 2010 J. Phys. B:At. Mol. Opt. Phys. 43 095504Google Scholar

    [34]

    Lu H, Fung C, Ma X, Cai QY 2011 Phys. Rev. A 84 042344Google Scholar

    [35]

    Beaudry N J, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062302Google Scholar

    [36]

    Henao C I, Serra R M 2015 Phys. Rev. A 92 052317Google Scholar

    [37]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [38]

    Meyer-Scott E, Silberhorn C, Migdall A 2020 Rev. Sci. Instrum. 91 041101Google Scholar

    [39]

    Kaneda F, Kwiat P G 2019 Sci. Adv. 5 eaaw8586Google Scholar

    [40]

    Hall M A, Altepeter J B, Kumar P 2011 Phys. Rev. Lett. 106 053901Google Scholar

    [41]

    Cao Y, Liang H, Yin J, Yong H L, Zhou F, Wu Y P, Ren J G, Li Y H, Pan G S, Yang T, Ma X, Peng C Z, Pan J W 2013 Opt. Express 21 27260Google Scholar

    [42]

    Wang H, Li W, Jiang X, He Y M, Li Y H, Ding X, Chen M C, Qin J, Peng C Z, Schneider C, Kamp M, Zhang W J, Li H, You L X, Wang Z, Dowling J P, Höfling S, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 230502Google Scholar

    [43]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46Google Scholar

    [44]

    Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar

    [45]

    郭邦红, 杨理, 向憧, 关翀, 吴令安, 刘颂豪 2013 物理学报 62 130303Google Scholar

    Guo B H, Yang L, Xiang C, Guan C, Wu L A, Liu S H 2013 Acta Phys. Sin. 62 130303Google Scholar

  • [1] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究. 物理学报, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案. 物理学报, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [4] 聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸. 降雪对地表附近自由空间量子信道的影响及参数仿真. 物理学报, 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [6] 尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川. 半导体自组织量子点量子发光机理与器件. 物理学报, 2018, 67(22): 227801. doi: 10.7498/aps.67.20180594
    [7] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [8] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [9] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [10] 周南润, 宋汉冲, 龚黎华, 刘晔. 基于GHZ态的三方量子确定性密钥分配协议. 物理学报, 2012, 61(21): 214203. doi: 10.7498/aps.61.214203
    [11] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [12] 杨磊, 马晓欣, 崔亮, 郭学石, 李小英. 基于色散位移光纤的高宣布式窄带单光子源. 物理学报, 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [13] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [14] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议. 物理学报, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [15] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [16] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进. 物理学报, 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [17] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议. 物理学报, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [18] 冯明明, 秦小林, 周春源, 熊 利, 丁良恩. 偏振光量子随机源. 物理学报, 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [19] 梁创, 符东浩, 梁冰, 廖静, 吴令安, 姚德成, 吕述望. 850nm光纤中1.1km量子密钥分发实验. 物理学报, 2001, 50(8): 1429-1433. doi: 10.7498/aps.50.1429
    [20] 廖静, 梁创, 魏亚军, 吴令安, 潘少华, 姚德成. 基于光量子的真随机源. 物理学报, 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
计量
  • 文章访问数:  4744
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-10-29
  • 上网日期:  2022-02-22
  • 刊出日期:  2022-03-05

/

返回文章
返回