搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体自组织量子点量子发光机理与器件

尚向军 马奔 陈泽升 喻颖 查国伟 倪海桥 牛智川

引用本文:
Citation:

半导体自组织量子点量子发光机理与器件

尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川

Physics and devices of quanutm light emission from semicoductor self-assembled quantum Dots

Shang Xiang-Jun, Ma Ben, Chen Ze-Sheng, Yu Ying, Zha Guo-Wei, Ni Hai-Qiao, Niu Zhi-Chuan
PDF
导出引用
  • 介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.
    Self-assembled semiconductor single quantum dots (QDs), as a good candidate of solid-state real single photon (SP) emitters in high purity and counting rate, have attracted great attention in recent two decades, promising for quantum information, optical quantum computation, quantum storage, and quantum coherent manipulation. To isolate single QD from the other QDs surrounding, 1) dilute QD density is well controlled during epitaxy; 2) micro-pillars or nanowires individually in space as hosts are fabricated. To enhance their uni-directional emission, GaAs/AlAs distributed Bragg reflector (DBR) planar cavity is integrated. To improve the system (i.e. confocal microscope, traditionally) stability and its optical collection efficiency, a near-field fiber coupling by adhering a micro-pillar chip to fiber facets directly is used. To enhance the coherence of QD spontaneous emission, resonant excitation technique is applied. In this article, we review our research progress in self-assembled QD SP emission, including SP emission from InAs or GaAs QDs on Ga droplet-self-catalyzed GaAs nanowires (with g2(0) of 0.031 or 0.18, respectively), SP emission from InAs/GaAs QDs coupled with high-Q (1000-5000) DBR micro-pillar cavities and their fiber-coupled device fabrication with SP fiber output rate ~1.8 MHz, single QD resonant fluorescence with inter-dot coherent visibility of 40%, strain-coupled bilayer InAs QDs to extend their emission wavelength to 1320 nm and parametric down conversion of 775 nm SP emission from single QD in nanowire to realize entangled photon pairs at 1550 nm (entanglement fidelity of 91.8%) for telecomm application, and definite quantum storage of InAs QD SPs at 879 nm in ion-doped solid (at most 100 time-bins). In future, there will be still several urgent things to do, including 1) puring the environment of a single QD (e.g. growing GaAs QDs to avoid the wetting layer, and optimizing QD growth to avoid smaller QDs) to reduce its spectral diffusion and developing a high-symmetric QD (e.g. GaAs QD) to reduce the fine structure splitting of its emission; 2) positioning single QD precisely for a good alignment of single QD to a micro-cavity or fiber cone (single mode with high numerical aperture) to increase optical excitation efficiency and SP collection efficiency; 3) developing optical quantum integrated chip, including hybrid structures of active micro-cavity and passive waveguide, and high-transmission waveguide beamsplitter or Mach-Zender interferometer to improve SP extraction (micro-cavity), collection (optical setup) and counting rate (at avalanched photon detectors and coincidence counting module).
      通信作者: 牛智川, zcniu@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91321313,90921015,61505196)资助的课题.
      Corresponding author: Niu Zhi-Chuan, zcniu@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91321313, 90921015, 61505196).
    [1]

    Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Huang S S, Ni H Q, Du Y, Xia J B 2008 Appl. Phys. Lett. 93 101107

    [2]

    Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401

    [3]

    Heindel T, Schneider C, Lermer M, Kwon S H, Braun T, Reitzenstein S, Höfling S, Kamp M, Forchel A 2010 Appl. Phys. Lett. 96 011107

    [4]

    Hargart F, Kessler C A, Schwarzbäck T, Koroknay E, Weidenfeld S, Jetter M, Michler P 2013 Appl. Phys. Lett. 102 011126

    [5]

    Muller M, Bounouar S, Jons K D, Glassl M, Michler P 2014 Nat. Photon. 8 224

    [6]

    Wang H, Duan Z C, Li Y H, Chen S, Li J P, He Y M, Chen M C, He Y, Ding X, Peng C Z, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 213601

    [7]

    He Y, He Y M, Wei Y J, Jiang X, Chen M C, Xiong F L, Zhao Y, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2013 Phys. Rev. Lett. 111 237403

    [8]

    Keil R, Zopf M, Chen Y, Hofer B, Zhang J X, Ding F, Schmidt O G 2017 Nat. Comm. 8 15501

    [9]

    Chen Y, Zhang J X, Zopf M, Jung K, Zhang Y, Keil R, Ding F, Schmidt O G 2016 Nat. Comm. 7 10387

    [10]

    Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Research Lett. 12 378

    [11]

    Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104

    [12]

    Zha G W, Shang X J, Su D, Yu Y, Wei B, Wang L, Li M F, Wang L J, Xu J X, Ni H Q, Ji Y, Sun B Q, Niu Z C 2014 Nanoscale 6 3190

    [13]

    Yu Y, Li M F, He J F, He Y M, Wei Y J, He Y, Zha G W, Shang X J, Wang J, Wang G W, Ni H Q, Lu C Y, Niu Z C 2013 Nano Lett. 13 1399

    [14]

    Yu Y, Dou X M, Wei B, Zha G W, Shang X J, Wang L, Su D, Xu J X, Wang H Y, Ni H Q, Sun B Q, Ji Y, Han X D, Niu Z C 2014 Adv. Mater. 26 2710

    [15]

    Zha G W, Shang X J, Ni H Q, Yu Y, Xu J X, Wei S H, Ma B, Zhang L C, Niu Z C 2015 Nanotechnology 26 385706

    [16]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Comm. 6 8652

    [17]

    Konthasinghe K, Peiris M, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Shih C K, Muller A 2012 Phys. Rev. Lett. 109 267402

    [18]

    Konthasinghe K, Walker J, Peiris M, Shih C K, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Muller A 2012 Phys. Rev. B 85 235315

    [19]

    Peiris M, Konthasinghe K, Yu Y, Niu Z C, Muller A 2014 Phys. Rev. B 89 155305

    [20]

    Chen G, Zou Y, Xu X Y, Tang J S, Li Y L, Xu J S, Han Y J, Li C F, Guo G C, Ni H Q, Yu Y, Li M F, Zha G W, Niu Z C, Kedem Y 2014 Phys. Rev. X 4 021043

    [21]

    Chen G, Zou Y, Zhang W H, Zhang Z H, Zhou Z Q, He D Y, Tang J S, Liu B H, Yu Y, Zha G W, Ni H Q, Niu Z C, Han Y J, Li C F, Guo G C 2016 Sci. Rep. 6 26680

    [22]

    Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q, Niu Z C 2016 Chin. Phys. B 25 107805

    [23]

    Zhou P Y, Dou X M, Wu X F, Ding K, Li M F, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2014 Sci. Rep. 4 3633

    [24]

    Michler P, Kiraz A, Zhang L, Becher C, Hu E, Imamoglu A 2000 Appl. Phys. Lett. 77 184

  • [1]

    Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Huang S S, Ni H Q, Du Y, Xia J B 2008 Appl. Phys. Lett. 93 101107

    [2]

    Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401

    [3]

    Heindel T, Schneider C, Lermer M, Kwon S H, Braun T, Reitzenstein S, Höfling S, Kamp M, Forchel A 2010 Appl. Phys. Lett. 96 011107

    [4]

    Hargart F, Kessler C A, Schwarzbäck T, Koroknay E, Weidenfeld S, Jetter M, Michler P 2013 Appl. Phys. Lett. 102 011126

    [5]

    Muller M, Bounouar S, Jons K D, Glassl M, Michler P 2014 Nat. Photon. 8 224

    [6]

    Wang H, Duan Z C, Li Y H, Chen S, Li J P, He Y M, Chen M C, He Y, Ding X, Peng C Z, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 213601

    [7]

    He Y, He Y M, Wei Y J, Jiang X, Chen M C, Xiong F L, Zhao Y, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2013 Phys. Rev. Lett. 111 237403

    [8]

    Keil R, Zopf M, Chen Y, Hofer B, Zhang J X, Ding F, Schmidt O G 2017 Nat. Comm. 8 15501

    [9]

    Chen Y, Zhang J X, Zopf M, Jung K, Zhang Y, Keil R, Ding F, Schmidt O G 2016 Nat. Comm. 7 10387

    [10]

    Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Research Lett. 12 378

    [11]

    Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104

    [12]

    Zha G W, Shang X J, Su D, Yu Y, Wei B, Wang L, Li M F, Wang L J, Xu J X, Ni H Q, Ji Y, Sun B Q, Niu Z C 2014 Nanoscale 6 3190

    [13]

    Yu Y, Li M F, He J F, He Y M, Wei Y J, He Y, Zha G W, Shang X J, Wang J, Wang G W, Ni H Q, Lu C Y, Niu Z C 2013 Nano Lett. 13 1399

    [14]

    Yu Y, Dou X M, Wei B, Zha G W, Shang X J, Wang L, Su D, Xu J X, Wang H Y, Ni H Q, Sun B Q, Ji Y, Han X D, Niu Z C 2014 Adv. Mater. 26 2710

    [15]

    Zha G W, Shang X J, Ni H Q, Yu Y, Xu J X, Wei S H, Ma B, Zhang L C, Niu Z C 2015 Nanotechnology 26 385706

    [16]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Comm. 6 8652

    [17]

    Konthasinghe K, Peiris M, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Shih C K, Muller A 2012 Phys. Rev. Lett. 109 267402

    [18]

    Konthasinghe K, Walker J, Peiris M, Shih C K, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Muller A 2012 Phys. Rev. B 85 235315

    [19]

    Peiris M, Konthasinghe K, Yu Y, Niu Z C, Muller A 2014 Phys. Rev. B 89 155305

    [20]

    Chen G, Zou Y, Xu X Y, Tang J S, Li Y L, Xu J S, Han Y J, Li C F, Guo G C, Ni H Q, Yu Y, Li M F, Zha G W, Niu Z C, Kedem Y 2014 Phys. Rev. X 4 021043

    [21]

    Chen G, Zou Y, Zhang W H, Zhang Z H, Zhou Z Q, He D Y, Tang J S, Liu B H, Yu Y, Zha G W, Ni H Q, Niu Z C, Han Y J, Li C F, Guo G C 2016 Sci. Rep. 6 26680

    [22]

    Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q, Niu Z C 2016 Chin. Phys. B 25 107805

    [23]

    Zhou P Y, Dou X M, Wu X F, Ding K, Li M F, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2014 Sci. Rep. 4 3633

    [24]

    Michler P, Kiraz A, Zhang L, Becher C, Hu E, Imamoglu A 2000 Appl. Phys. Lett. 77 184

计量
  • 文章访问数:  2088
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-07-28
  • 刊出日期:  2019-11-20

半导体自组织量子点量子发光机理与器件

  • 1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083;
  • 2. 中国科学院大学材料科学与光电技术学院, 北京 100049
  • 通信作者: 牛智川, zcniu@semi.ac.cn
    基金项目: 国家自然科学基金(批准号:91321313,90921015,61505196)资助的课题.

摘要: 介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回