搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体上转换单光子探测技术研究进展

白鹏 张月蘅 沈文忠

引用本文:
Citation:

半导体上转换单光子探测技术研究进展

白鹏, 张月蘅, 沈文忠

Research progress of semiconductor up-conversion single photon detection technology

Bai Peng, Zhang Yue-Heng, Shen Wen-Zhong
PDF
导出引用
  • 近年来,量子通信技术取得了卓越的进步和发展,而作为接收端的单光子探测器在其通信系统中则起着至关重要的作用.本文聚焦于当前主流的半导体单光子探测器,就其器件原理、工作模式、优势和劣势等方面进行了相关评述.在此基础上,着重介绍了本课题组所提出的一种新型半导体近红外上转换单光子探测技术(USPD)的研究进展.从USPD的器件基本原理、器件结构、性能指标等方面阐述了其优越性和可行性,并给出了USPD最新的空间光耦合实验结果.半导体上转换单光子探测技术的关键特性在于它不是采用InP雪崩层结构实现信号的放大,而是利用成熟的硅单光子雪崩二极管(Si-SPAD)器件来实现信号的放大和采集,从而规避InP结构在暗计数率和后脉冲效应方面的问题.USPD利用半导体材料,通过外加电场将近红外光子上转换为短波近红外或者可见光子,再用商用Si-SPAD进行探测的方法,也为我们提供了一种单光子探测的新思路,打开了另一扇单光子探测的窗口.
    Quantum communication technology has achieved remarkable progress and development in recent years, and the single photon detector, as the receiving terminal, plays a vital role in communication systems. In this paper, we focus on the current mainstream semiconductor-based single photon detectors and review their device principle, operating mode, advantages and disadvantages. Besides, the research progress of a novel semiconductor near-infrared single photon detection technology (USPD) is introduced. The feasibility and superiority of the USPD device are demonstrated from the basic principle, device structure and key performance indicators of USPD, and the latest spatial optical coupling experiment results of the USPD are also given. The design principle of the USPD device is to utilize Si multiplication layer of the Si SPAD as a multiplication layer instead of InP in conventional InGaAs-SPAD. The Si-SPAD has a much lower dark count rate and afterpulsing effect because of high-quality material of Si. Such a characteristic design of USPD can suppress the afterpulsing probability to the same level as that of the Si-SPAD and enables it to operate in the free-running regime without sacrificing photon detection efficiency. For the same reason, the dark count rate (DCR) of USPD is also very low. The operating mechanism of USPD is to convert the infrared photons into near-infrared or visible photons and the emitted near-infrared photons can be detected by a Si SPAD, which provides us with a new idea for single photon detection.
      通信作者: 张月蘅, yuehzhang@sjtu.edu.cn
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91221201)资助的课题.
      Corresponding author: Zhang Yue-Heng, yuehzhang@sjtu.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 91221201).
    [1]

    Eisaman M D, Fan J, Migdall A, Polyakov S V 2011 Rev. Sci. Instrum. 82 202

    [2]

    Hadfield R H 2009 Nat. Photon. 3 696

    [3]

    Fujiwara M, Tanaka A, Takahashi S, Yoshino K, Nambu Y, Tajima A, Miki S, Yamashita T, Wang Z, Tomita A, Sasaki M 2011 Opt. Express 19 19562

    [4]

    Ma L, Slattery O, Mink A 2009 Quantum Communications and Quantum Imaging Naples, Italy, October 26-30, 2009 p7465

    [5]

    Diamanti E, Takesue H, Honjo T, Inoue K, Yamamoto Y 2005 Phys. Rev. A 72 052311

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [7]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43

    [8]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70

    [9]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795

    [10]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [11]

    Zhang J, Itzler M A, Zbinden H, Pan J W 2015 Light-Sci. Appl. 4 286

    [12]

    Albota M A, Wong F N 2004 Opt. Lett. 29 1449

    [13]

    Vandevender A P, Kwiat P G 2004 J. Mod. Opt. 51 1433

    [14]

    Gu X R, Huang K, Li Y, Pan H F, Wu E, Zeng H P 2010 Appl. Phys. Lett. 96 131111

    [15]

    Huang K, Gu X R, Ren M, Jian Y, Pan H F, Wu G, Wu E, Zeng H P 2011 Opt. Lett. 36 1722

    [16]

    Huang K, Gu X R, Pan H F, Wu E, Zeng H P 2012 Appl. Phys. Lett. 100 151102

    [17]

    Pan H F, Wu E, Dong H, Zeng H P 2008 Phys. Rev. A 77 33815

    [18]

    Langrock C, Diamanti E, Roussev R V, Yamamoto Y, Fejer M M, Takesue H 2005 Opt. Lett. 30 1725

    [19]

    Shentu G L, Pelc J S, Wang X D, Sun Q C, Zheng M Y, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 13986

    [20]

    Renker D, Lorenz E 2009 J. Instrum. 4 4004

    [21]

    Thomas O, Yuan Z L, Dynes J F, Sharpe A W, Shields A J 2010 Appl. Phys. Lett. 97 031102

    [22]

    Comandar L C, Fröhlich B, Dynes J F, Sharpe A W, Lucamarini M, Yuan Z L, Penty R V, Shields A J 2015 J. Appl. Phys. 117 083109

    [23]

    Korzh B, Walenta N, Lunghi T, Gisin N, Zbinden H 2014 Appl. Phys. Lett. 104 145

    [24]

    Lunghi T, Barreiro C, Guinnard O, Houlmann R, Jiang X, Itzler M A, Zbinden H 2012 J. Mod. Opt. 59 1481

    [25]

    Hawkins A R, Reynolds T E, England D R, Babic D I, Mondry M J, Streubel K, Bowers J E 1996 Appl. Phys. Lett. 68 3692

    [26]

    Kang Y, Mages P, Clawson A R, Lau S S, Lo Y H, Yu P K L, Pauchard A, Zhu Z, Zhou Y 2001 Appl. Phys. Lett. 79 970

    [27]

    Kang Y, Lo Y H, Bitter M, Kristjansson S, Pan Z, Pauchard A 2004 Appl. Phys. Lett. 85 1668

    [28]

    Allard L B, Liu H C, Buchanan M, Wasilewski Z R 1997 Appl. Phys. Lett. 70 2784

    [29]

    Luo H, Ban D, Liu H C, SpringThorpe A J, Wasilewski Z R, Buchanan M, Glew R 2004 J. Vac. Sci. Technol. A 22 788

    [30]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Buchanan M 2005 IEEE Photon. Tech. L. 17 1477

    [31]

    Chen J, Tao J, Ban D, Helander M G, Wang Z, Qiu J, Lu Z 2012 Adv. Mater. 24 3138

    [32]

    Liu H C, Allard L B, Buchanan M, Wasilewski Z R 1997 Electron. Lett. 33 379

    [33]

    Liu H C, Li J, Wasilewski Z R, Buchanan M 1995 Electron. Lett. 31 832

    [34]

    Ban D, Luo H, Liu H C, Wasilewski Z R, SpringThorpe A J, Glew R, Buchanan M 2004 J. Appl. Phys. 96 5243

    [35]

    Bai P, Zhang Y H, Shen W Z 2017 Sci. Rep. 7 15341

    [36]

    Balkanski M, Wallis R F 2000 Semiconductor Physics and Applications (Oxford: Oxford University Press) pp26-36

    [37]

    Cova S, Longoni A, Andreoni A, Cubeddu R 1983 IEEE J. Quantum Elect. 19 630

    [38]

    Renker D 2006 Nucl. Instrum. Meth. A 567 48

    [39]

    Cova S, Ghioni M, Zappa F, Rech I, Gulinatti A 2006 In Advanced Photon Counting Techniques Boston, USA, October 3-4 2006 p63720

    [40]

    Savuskan V, Javitt M, Visokolov G, Brouk I, Nemirovsky Y 2013 IEEE Sens. J. 13 2322

    [41]

    Cova S, Ghioni M, Lotito A, Rech I, Zappa F 2004 J. Mod. Opt. 51 1267

    [42]

    Michalet X, Colyer R A, Scalia G, Ingargiola A, Lin R, Millaud J E, Weiss S, Siegmund O H W, Tremsin A S, Vallerga J V, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni F, Cova S 2013 Philos. T. R. Soc. B 368 20120035

    [43]

    Ghioni M, Gulinatti A, Rech I, Zappa F, Cova S 2007 IEEE J. Sel. Top. Quant. 13 852

    [44]

    Michalet X, Ingargiola A, Colyer R A, Scalia G, Weiss S, Maccagnani P, Gulinatti A, Rech I, Ghioni M 2014 IEEE J. Sel. Top. Quant. 20 248

    [45]

    Felekyan S, Khnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel C A M 2005 Rev. Sci. Instrum. 76 968

    [46]

    Rech I, Labanca I, Ghioni M, Cova S 2006 Rev. Sci. Instrum. 77 1524

    [47]

    Dautet H, Deschamps P, Dion B, MacGregor A D, MacSween D, McIntyre R J, Trottie C, Webb P P 1993 Appl. Opt. 32 3894

    [48]

    Itzler M A, Ben-Michael R, Hsu C F, Slomkowski K, Tosi A, Cova S, Zappa F, Ispasoiu R 2007 J. Mod. Opt. 54 283

    [49]

    Tosi A, Mora A D, Zappa F, Cova S 2009 J. Mod. Opt. 56 299

    [50]

    Rowe M A, Gansen E J, Greene M, Hadfield R H, Harvey T E, Su M Y, Nam S W, Mirin R P, Rosenberg D 2006 Appl. Phys. Lett. 89 253505

    [51]

    Gansen E J, Rowe M A, Greene M B, Rosenberg D, Harvey T E, Su M Y, Nam S W, Hadfield R H, Mirin R P 2007 Nat. Photon. 1 585

    [52]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Paltiel Y, Raizman A, Sher A 2005 Appl. Phys. Lett. 86 151

    [53]

    Li B, L Q Q, Cui R, Yin W H, Yang X H, Han Q 2015 IEEE Photon. Tech. L. 27 34137

    [54]

    Wang X D, Hu W D, Chen X S, Lu W, Tang H J, Li T, Gong H M 2008 IEEE NUSOD 40 14

    [55]

    Shi M, Shao X M, Tang H J, Li T, Huang X, Cao G Q, Wang R, Li P, Li X, Gong H M 2016 J. Infrared Millim. Wave 35 47 (in Chinese) [石铭, 邵秀梅, 唐恒敬, 李淘, 黄星, 曹高奇, 王瑞, 李平, 李雪, 龚海梅 2016 红外与毫米波学报 35 47]

    [56]

    Li X, Tang H J, Li T, Wei P, Gong H M, Fang J X 2013 International Symposium on Photoelectronic Detection & Imaging Beijing, China, June 2-6, 2013 p890703

    [57]

    Cao G, Tang H J, Shao X, Wang R, Li X, Gong H M 2015 AOPC 2015 Optical and Optoelectronic Sensing and Imaging Technology Beijing, China, May 7-9, 2015 p967411

    [58]

    Li X, Gong H M, Fang J, Shao X, Tang H J, Huang S, Li T, Huang Z C 2016 Infrared Phys. Techn. 80 112

    [59]

    Fu Z L, Gu L L, Guo X G, Tan Z Y, Wan W J, Zhou T, Shao D X, Zhang R, Cao J C 2016 Sci. Rep. 6 25383

    [60]

    Tien P K, Ulrich R 1970 J. Opt. Soc. Am. 60 1325

    [61]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497

    [62]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192

    [63]

    Warburton R E, Itzler M A, Buller G S 2009 Electron. Lett. 45 996

    [64]

    Warburton R E, Itzler M A, Buller G S 2009 Appl. Phys. Lett. 94 397

    [65]

    Korzh B, Zbinden H 2014 In Advanced Photon Counting Techniques Orlando, United States, April 7-8, 2014 p91140

    [66]

    Xu L, Wu E, Gu X, Jian Y, Wu G, Zeng H P 2009 Appl. Phys. Lett. 94 1396

    [67]

    Ma L, Bienfang J C, Slattery O, Tang X 2011 Opt. Express 19 5470

    [68]

    Shentu G L, Sun Q C, Jiang X, Wang X D, Pelc J S, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 24674

    [69]

    Chiu S, Scott A 2000 QWIP-LED/CCD Coupling Study (Ottawa: Defence Research Establishment) pp39-41

    [70]

    Chu X, Guan M, Li L, Zhang Y, Zhang F, Li Y, Zhu Z, Wang B, Zeng Y 2012 ACS Appl. Mater. Inter. 4 4976

    [71]

    Yu H, Kim D, Lee J, Baek S, Lee J, Singh R, Lee J, Singh R, So F 2016 Nat. Photon. 10 129

  • [1]

    Eisaman M D, Fan J, Migdall A, Polyakov S V 2011 Rev. Sci. Instrum. 82 202

    [2]

    Hadfield R H 2009 Nat. Photon. 3 696

    [3]

    Fujiwara M, Tanaka A, Takahashi S, Yoshino K, Nambu Y, Tajima A, Miki S, Yamashita T, Wang Z, Tomita A, Sasaki M 2011 Opt. Express 19 19562

    [4]

    Ma L, Slattery O, Mink A 2009 Quantum Communications and Quantum Imaging Naples, Italy, October 26-30, 2009 p7465

    [5]

    Diamanti E, Takesue H, Honjo T, Inoue K, Yamamoto Y 2005 Phys. Rev. A 72 052311

    [6]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [7]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43

    [8]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70

    [9]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795

    [10]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [11]

    Zhang J, Itzler M A, Zbinden H, Pan J W 2015 Light-Sci. Appl. 4 286

    [12]

    Albota M A, Wong F N 2004 Opt. Lett. 29 1449

    [13]

    Vandevender A P, Kwiat P G 2004 J. Mod. Opt. 51 1433

    [14]

    Gu X R, Huang K, Li Y, Pan H F, Wu E, Zeng H P 2010 Appl. Phys. Lett. 96 131111

    [15]

    Huang K, Gu X R, Ren M, Jian Y, Pan H F, Wu G, Wu E, Zeng H P 2011 Opt. Lett. 36 1722

    [16]

    Huang K, Gu X R, Pan H F, Wu E, Zeng H P 2012 Appl. Phys. Lett. 100 151102

    [17]

    Pan H F, Wu E, Dong H, Zeng H P 2008 Phys. Rev. A 77 33815

    [18]

    Langrock C, Diamanti E, Roussev R V, Yamamoto Y, Fejer M M, Takesue H 2005 Opt. Lett. 30 1725

    [19]

    Shentu G L, Pelc J S, Wang X D, Sun Q C, Zheng M Y, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 13986

    [20]

    Renker D, Lorenz E 2009 J. Instrum. 4 4004

    [21]

    Thomas O, Yuan Z L, Dynes J F, Sharpe A W, Shields A J 2010 Appl. Phys. Lett. 97 031102

    [22]

    Comandar L C, Fröhlich B, Dynes J F, Sharpe A W, Lucamarini M, Yuan Z L, Penty R V, Shields A J 2015 J. Appl. Phys. 117 083109

    [23]

    Korzh B, Walenta N, Lunghi T, Gisin N, Zbinden H 2014 Appl. Phys. Lett. 104 145

    [24]

    Lunghi T, Barreiro C, Guinnard O, Houlmann R, Jiang X, Itzler M A, Zbinden H 2012 J. Mod. Opt. 59 1481

    [25]

    Hawkins A R, Reynolds T E, England D R, Babic D I, Mondry M J, Streubel K, Bowers J E 1996 Appl. Phys. Lett. 68 3692

    [26]

    Kang Y, Mages P, Clawson A R, Lau S S, Lo Y H, Yu P K L, Pauchard A, Zhu Z, Zhou Y 2001 Appl. Phys. Lett. 79 970

    [27]

    Kang Y, Lo Y H, Bitter M, Kristjansson S, Pan Z, Pauchard A 2004 Appl. Phys. Lett. 85 1668

    [28]

    Allard L B, Liu H C, Buchanan M, Wasilewski Z R 1997 Appl. Phys. Lett. 70 2784

    [29]

    Luo H, Ban D, Liu H C, SpringThorpe A J, Wasilewski Z R, Buchanan M, Glew R 2004 J. Vac. Sci. Technol. A 22 788

    [30]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Buchanan M 2005 IEEE Photon. Tech. L. 17 1477

    [31]

    Chen J, Tao J, Ban D, Helander M G, Wang Z, Qiu J, Lu Z 2012 Adv. Mater. 24 3138

    [32]

    Liu H C, Allard L B, Buchanan M, Wasilewski Z R 1997 Electron. Lett. 33 379

    [33]

    Liu H C, Li J, Wasilewski Z R, Buchanan M 1995 Electron. Lett. 31 832

    [34]

    Ban D, Luo H, Liu H C, Wasilewski Z R, SpringThorpe A J, Glew R, Buchanan M 2004 J. Appl. Phys. 96 5243

    [35]

    Bai P, Zhang Y H, Shen W Z 2017 Sci. Rep. 7 15341

    [36]

    Balkanski M, Wallis R F 2000 Semiconductor Physics and Applications (Oxford: Oxford University Press) pp26-36

    [37]

    Cova S, Longoni A, Andreoni A, Cubeddu R 1983 IEEE J. Quantum Elect. 19 630

    [38]

    Renker D 2006 Nucl. Instrum. Meth. A 567 48

    [39]

    Cova S, Ghioni M, Zappa F, Rech I, Gulinatti A 2006 In Advanced Photon Counting Techniques Boston, USA, October 3-4 2006 p63720

    [40]

    Savuskan V, Javitt M, Visokolov G, Brouk I, Nemirovsky Y 2013 IEEE Sens. J. 13 2322

    [41]

    Cova S, Ghioni M, Lotito A, Rech I, Zappa F 2004 J. Mod. Opt. 51 1267

    [42]

    Michalet X, Colyer R A, Scalia G, Ingargiola A, Lin R, Millaud J E, Weiss S, Siegmund O H W, Tremsin A S, Vallerga J V, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni F, Cova S 2013 Philos. T. R. Soc. B 368 20120035

    [43]

    Ghioni M, Gulinatti A, Rech I, Zappa F, Cova S 2007 IEEE J. Sel. Top. Quant. 13 852

    [44]

    Michalet X, Ingargiola A, Colyer R A, Scalia G, Weiss S, Maccagnani P, Gulinatti A, Rech I, Ghioni M 2014 IEEE J. Sel. Top. Quant. 20 248

    [45]

    Felekyan S, Khnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel C A M 2005 Rev. Sci. Instrum. 76 968

    [46]

    Rech I, Labanca I, Ghioni M, Cova S 2006 Rev. Sci. Instrum. 77 1524

    [47]

    Dautet H, Deschamps P, Dion B, MacGregor A D, MacSween D, McIntyre R J, Trottie C, Webb P P 1993 Appl. Opt. 32 3894

    [48]

    Itzler M A, Ben-Michael R, Hsu C F, Slomkowski K, Tosi A, Cova S, Zappa F, Ispasoiu R 2007 J. Mod. Opt. 54 283

    [49]

    Tosi A, Mora A D, Zappa F, Cova S 2009 J. Mod. Opt. 56 299

    [50]

    Rowe M A, Gansen E J, Greene M, Hadfield R H, Harvey T E, Su M Y, Nam S W, Mirin R P, Rosenberg D 2006 Appl. Phys. Lett. 89 253505

    [51]

    Gansen E J, Rowe M A, Greene M B, Rosenberg D, Harvey T E, Su M Y, Nam S W, Hadfield R H, Mirin R P 2007 Nat. Photon. 1 585

    [52]

    Ban D, Luo H, Liu H C, Wasilewski Z R, Paltiel Y, Raizman A, Sher A 2005 Appl. Phys. Lett. 86 151

    [53]

    Li B, L Q Q, Cui R, Yin W H, Yang X H, Han Q 2015 IEEE Photon. Tech. L. 27 34137

    [54]

    Wang X D, Hu W D, Chen X S, Lu W, Tang H J, Li T, Gong H M 2008 IEEE NUSOD 40 14

    [55]

    Shi M, Shao X M, Tang H J, Li T, Huang X, Cao G Q, Wang R, Li P, Li X, Gong H M 2016 J. Infrared Millim. Wave 35 47 (in Chinese) [石铭, 邵秀梅, 唐恒敬, 李淘, 黄星, 曹高奇, 王瑞, 李平, 李雪, 龚海梅 2016 红外与毫米波学报 35 47]

    [56]

    Li X, Tang H J, Li T, Wei P, Gong H M, Fang J X 2013 International Symposium on Photoelectronic Detection & Imaging Beijing, China, June 2-6, 2013 p890703

    [57]

    Cao G, Tang H J, Shao X, Wang R, Li X, Gong H M 2015 AOPC 2015 Optical and Optoelectronic Sensing and Imaging Technology Beijing, China, May 7-9, 2015 p967411

    [58]

    Li X, Gong H M, Fang J, Shao X, Tang H J, Huang S, Li T, Huang Z C 2016 Infrared Phys. Techn. 80 112

    [59]

    Fu Z L, Gu L L, Guo X G, Tan Z Y, Wan W J, Zhou T, Shao D X, Zhang R, Cao J C 2016 Sci. Rep. 6 25383

    [60]

    Tien P K, Ulrich R 1970 J. Opt. Soc. Am. 60 1325

    [61]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497

    [62]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192

    [63]

    Warburton R E, Itzler M A, Buller G S 2009 Electron. Lett. 45 996

    [64]

    Warburton R E, Itzler M A, Buller G S 2009 Appl. Phys. Lett. 94 397

    [65]

    Korzh B, Zbinden H 2014 In Advanced Photon Counting Techniques Orlando, United States, April 7-8, 2014 p91140

    [66]

    Xu L, Wu E, Gu X, Jian Y, Wu G, Zeng H P 2009 Appl. Phys. Lett. 94 1396

    [67]

    Ma L, Bienfang J C, Slattery O, Tang X 2011 Opt. Express 19 5470

    [68]

    Shentu G L, Sun Q C, Jiang X, Wang X D, Pelc J S, Fejer M M, Zhang Q, Pan J W 2013 Opt. Express 21 24674

    [69]

    Chiu S, Scott A 2000 QWIP-LED/CCD Coupling Study (Ottawa: Defence Research Establishment) pp39-41

    [70]

    Chu X, Guan M, Li L, Zhang Y, Zhang F, Li Y, Zhu Z, Wang B, Zeng Y 2012 ACS Appl. Mater. Inter. 4 4976

    [71]

    Yu H, Kim D, Lee J, Baek S, Lee J, Singh R, Lee J, Singh R, So F 2016 Nat. Photon. 10 129

计量
  • 文章访问数:  2442
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-08
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-11-20

半导体上转换单光子探测技术研究进展

  • 1. 上海交通大学, 人工结构与量子调控教育部重点实验室, 上海 200240;
  • 2. 人工微结构科学与技术协同创新中心, 南京 210093
  • 通信作者: 张月蘅, yuehzhang@sjtu.edu.cn
    基金项目: 

    国家自然科学基金重大研究计划(批准号:91221201)资助的课题.

摘要: 近年来,量子通信技术取得了卓越的进步和发展,而作为接收端的单光子探测器在其通信系统中则起着至关重要的作用.本文聚焦于当前主流的半导体单光子探测器,就其器件原理、工作模式、优势和劣势等方面进行了相关评述.在此基础上,着重介绍了本课题组所提出的一种新型半导体近红外上转换单光子探测技术(USPD)的研究进展.从USPD的器件基本原理、器件结构、性能指标等方面阐述了其优越性和可行性,并给出了USPD最新的空间光耦合实验结果.半导体上转换单光子探测技术的关键特性在于它不是采用InP雪崩层结构实现信号的放大,而是利用成熟的硅单光子雪崩二极管(Si-SPAD)器件来实现信号的放大和采集,从而规避InP结构在暗计数率和后脉冲效应方面的问题.USPD利用半导体材料,通过外加电场将近红外光子上转换为短波近红外或者可见光子,再用商用Si-SPAD进行探测的方法,也为我们提供了一种单光子探测的新思路,打开了另一扇单光子探测的窗口.

English Abstract

参考文献 (71)

目录

    /

    返回文章
    返回