-
铅盐量子点的最低量子态的多重简并和胶体量子点与谐振腔耦合难度大阻碍了近红外胶体量子点激光器的发展。本工作利用基于硒化银( Ag2Se)量子点的自组装激光器解决了上述挑战。利用最低量子态2重简并的Ag2Se量子点代替铅盐量子点来实现低阈值的近红外光增益。使用有限元法深入分析了咖啡环微腔的模场分布和振荡机制,结果表明光场在横截面内沿之字形路径传播振荡,量子点与腔模式实现了强耦合。分析了腔长与自由光谱范围和激光发射波长的关系,基于此关系以及Ag2Se量子点的增益谱特性设计了单模近红外激光器,分析了该激光器的激光特性。以仿真结果为指导,实验制备了阈值低至158 μJ cm-2,线宽为0.3 nm的单模近红外激光器。通过增加激光器腔长,使发射波长从1300 nm增至1323 nm。此外,由于Ag2Se量子点的毒性几乎可以忽略,这项工作推进了环境友好的近红外激光器向实用型激光器发展。The development of colloidal near-infrared quantum dots (QD) lasers has been hindered by the high state degeneracy of lead salt QDs and the difficulty in coupling colloidal quantum dots to the resonant cavity. In this study, we show that above challenges can be addressed by the self-assembly laser based on Ag2Se QDs. Ag2Se QDs with the lowest quantized states 2-fold degeneracy are used to replace lead salt quantum dots to achieve low threshold near-infrared optical gain. We employ the finite element method to deeply analyze the mode field distribution and oscillation mechanism of the coffee-ring microcavity. Our results reveal that the light field oscillates in a zig-zag path along the cross-sectional area, indicating strong coupling between the QDs and the cavity mode. Furthermore, we investigate the relationship between cavity length and free spectrum range and laser emission wavelength. Leveraging this relationship and the gain spectrum characteristics of Ag2Se QDs, we design a single-mode near-infrared laser and conduct a comprehensive analysis. Using simulation results to fabricate a single-mode near-infrared Ag2Se QD coffee-ring microlaser, which exhibits a linewidth of 0.3 nm and a threshold of 158 μJ cm-2. Currently, it holds the record for the lowest laser threshold among near-infrared colloidal QD lasers. Increasing the laser cavity length, resulting in an increase in the emission wavelength from 1300 nm to 1323 nm. In addition, the toxicity of Ag2Se QDs is remarkably negligible. Our work promotes the development of environment-friendly near-infrared lasers to practical lasers.
-
[1] Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A 2010 Nat. Photonics 4 33
[2] Whitworth G L, Dalmases M, Taghipour N, Konstantatos G 2021 Nat. Photonics 15 738
[3] Cegielski P J, Giesecke A L, Neutzner S, Porschatis C, Gandini M, Schall D, Perini C A, Bolten J, Suckow S, Kataria S 2018 Nano Lett. 18 6915
[4] Vollmer F, Arnold S 2008 Nat. Methods 5 591
[5] Chen YC, Fan X 2019 Adv. Opt. Mater. 7 1900377
[6] Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale a C, Eisler H J, Bawendi M 2000 Science 290 314
[7] Ahn N, Livache C, Pinchetti V, Jung H, Jin H, Hahm D, Park Y S, Klimov V I 2023 Nature 617 79
[8] Fan F, Voznyy O, Sabatini R P, Bicanic K T, Adachi M M, McBride J R, Reid K R, Park Y S, Li X, Jain A, Quintero-Bermudez R, Saravanapavanantham M, Liu M, Korkusinski M, Hawrylak P, Klimov V I, Rosenthal S J, Hoogland S, Sargent E H 2017 Nature 544 75
[9] Dang C, Lee J, Breen C, Steckel J S, Coe-Sullivan S, Nurmikko A 2012 Nat. Nanotechnol. 7 335
[10] Wang Y, Yu D, Wang Z, Li X, Chen X, Nalla V, Zeng H, Sun H 2017 Small 13 1701587
[11] Ledentsov N, Ustinov V, Egorov A Y, Zhukov A, Maksimov M, Tabatadze I, 16 Kop'ev P 1994 Semiconductors 28 832
[12] Sukhovatkin V, Musikhin S, Gorelikov I, Cauchi S, Bakueva L, Kumacheva E, Sargent E H 2005 Opt. Lett. 30 171
[13] Schaller R D, Petruska M A, Klimov V I 2003 J. Phys. Chem. B 107 13765
[14] Klimov V I, Mikhailovsky A A, McBranch D, Leatherdale C A, Bawendi M G 2000 Science 287 1011
[15] Wundke K, Auxier J, Schülzgen A, Peyghambarian N, Borrelli N 1999 Appl. Phys. Lett. 75 3060
[16] Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q 2013 Chem. Mater. 25 2503
[17] Zhu C N, Jiang P, Zhang Z L, Zhu D L, Tian Z Q, Pang D W 2013 ACS Appl. Mater. Interfaces 5 1186
[18] Liao C, Tang L, Wang L, Li Y, Xu J, Jia Y 2020 Nanoscale 12 21879
[19] Liao C, Tang L, Li Y, Sun S, Wang L, Xu J, Jia Y, Gu Z 2022 Nanoscale 14 10169
[20] Chang H, Zhong Y, Dong H, Wang Z, Xie W, Pan A, Zhang L 2021 Light: Sci. Appl. 10 60
[21] Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897
[22] Yang H, Zhang L, Xiang W, Lu C, Cui Y, Zhang J 2022 Adv. Sci. 9 2200395
[23] Duan R, Zhang Z, Xiao L, Zhao X, Thung Y T, Ding L, Liu Z, Yang J, Ta V D,Sun H 2022 Adv. Mater. 34 2270104
[24] Wang Y, Leck K S, Ta D, Chen R, Nalla V, Gao Y, He T, Demir H, Sun H 2015 Adv. Mater. 27 169
[25] Zhang L, Li H, Liao C, Yang H, Ruilin X, Jiang X, Xiao M, Lu C, Cui Y, Zhang J 2018 J. Phys. Chem. C 122 25059
[26] Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z, He T, Ohl C D, Demir H V, Sun H 2017 Nano Lett. 17 2640
[27] Wang G, Jiang X, Zhao M, Ma Y, Fan H, Yang Q, Tong L, Xiao M 2012 Opt. Express 20 29472
[28] Min B, Kim S, Okamoto K, Yang L, Scherer A, Atwater H, Vahala K 2006 Appl. Phys. Lett. 89 191124
[29] Di Stasio F, Grim J Q, Lesnyak V, Rastogi P, Manna L, Moreels I, Krahne R 2015 Small 11 1328
[30] Zavelani-Rossi M, Krahne R, Della Valle G, Longhi S, Franchini I, Girardo S, Scotognella F, Pisignano D, Manna L, Lanzani G, Tassone F 2012 Laser Photonics Rev. 6 678
[31] Xu Z, Zhai T, Shi X, Tong J, Wang X, Deng J 2021 ACS Appl. Mater. Interfaces 13 19324
[32] Zhang C, Zou C L, Zhao Y, Dong C H, Wei C, Wang H, Liu Y, Guo G C, Yao J, Zhao Y S 2015 Sci. Adv. 1 e1500257
[33] Wong W W, Su Z, Wang N, Jagadish C, Tan H H 2021 Nano Lett. 21 5681
[34] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827
[35] Zhang Y J, Ye F X, Dai J, He B F, Zang D Y 2017 Acta Phys. Sin. 66 066101(in Chinese) [张永建,叶芳霞,戴君,何斌锋,臧渡洋 2017 物理学报 66 066101]
[36] Zavelani-Rossi M, Lupo M G, Krahne R, Manna L, Lanzani G 2010 Nanoscale 2 931
[37] Ma J, Xiao L, Gu J, Li H, Cheng X, He G, Jiang X, Xiao M 2019 Photonics Res. 7 573
[38] Park Y S, Roh J, Diroll B T, Schaller R D, Klimov V I 2021 Nat. Rev. Mater. 6 382
[39] Ahn N, Livache C, Pinchetti V, Klimov V I 2023 Chem. Rev. 123 8251
[40] Taghipour N, Dalmases M, Whitworth G L, Dosil M, Othonos A, Christodoulou S, Liga S M, Konstantatos G 2023 Adv. Mater. 35 2207678
[41] Kozlov O V, Park Y S, Roh J, Fedin I, Nakotte T, Klimov V I 2019 Science 365 672
计量
- 文章访问数: 1536
- PDF下载量: 36
- 被引次数: 0