搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ag2Se量子点的近红外自组装激光器

廖晨 姚宁 唐路平 施伟华 孙少凌 杨浩然

引用本文:
Citation:

基于Ag2Se量子点的近红外自组装激光器

廖晨, 姚宁, 唐路平, 施伟华, 孙少凌, 杨浩然

Near-infrared self-assembled laser based on Ag2Se quantum dots

Liao Chen, Yao Ning, Tang Lu-Ping, Shi Wei-Hua, Sun Shao-Ling, Yang Hao-Ran
PDF
HTML
导出引用
  • 铅盐量子点的最低量子态的多重简并和胶体量子点与谐振腔耦合难度大, 阻碍了近红外胶体量子点激光器的发展. 本文利用基于Ag2Se量子点的自组装激光器解决了上述问题. 利用最低量子态二重简并的Ag2Se量子点代替铅盐量子点来实现低阈值的近红外光增益. 使用有限元法深入分析了咖啡环微腔的模场分布和振荡机制, 结果表明光场在横截面内沿之字形路径传播振荡, 量子点与腔模式实现了强耦合. 分析了腔长与自由光谱范围和激光发射波长的关系, 基于此关系以及Ag2Se量子点的增益谱特性设计了单模近红外激光器, 分析了该激光器的激光特性. 以仿真结果为指导, 实验制备了阈值低至158 μJ/cm2, 线宽为0.3 nm的单模近红外激光器. 通过增加激光器腔长, 使发射波长从1300 nm增至1323 nm. 此外, 由于Ag2Se量子点的毒性几乎可以忽略, 所以本文推进了环境友好的近红外激光器向实用型激光器发展.
    The development of colloidal near-infrared quantum dot (QD) lasers has been hindered by the high state degeneracy of lead salt QDs and the difficulty in coupling colloidal QDs to the resonant cavity. In this study, we show that the above challenges can be addressed by the self-assembly laser based on Ag2Se QDs. The Ag2Se QDs with the lowest quantized states 2-fold degeneracy are used to replace lead salt quantum dots to achieve low threshold near-infrared optical gain. We employ the finite element method to in depth analyze the mode field distribution and oscillation mechanism of the coffee-ring microcavity. Our results reveal that the light field oscillates in a zig-zag path along the cross-sectional area, indicating strong coupling between the QDs and the cavity mode. Furthermore, we investigate the relationship of cavity length with free spectrum range and laser emission wavelength. Using this relationship and the gain spectrum characteristics of Ag2Se QDs, we design a single-mode near-infrared laser and conduct a comprehensive analysis. The simulation results are used to fabricate a single-mode near-infrared Ag2Se QD coffee-ring microlaser, which exhibits a linewidth of 0.3 nm and a threshold of 158 μJ/cm2. Currently, it holds the record for the lowest laser threshold among near-infrared colloidal QD lasers. The increasing of the laser cavity length leads the emission wavelength to increase from 1300 nm to 1323 nm. In addition, the toxicity of Ag2Se QD is remarkably negligible. Our work promotes the development of environment-friendly near-infrared lasers toward practical lasers.
      通信作者: 廖晨, chenliao@njupt.edu.cn ; 施伟华, shiwh@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704200, 52001168)、南京邮电大学引进人才科研启动基金(批准号: NY217130)、中国博士后科学基金(批准号: 2022M710668)、中央高校基本科研业务费专项资金(批准号: 2242020k30039)和东南大学MEMS教育部重点实验室开放研究基金资助的课题.
      Corresponding author: Liao Chen, chenliao@njupt.edu.cn ; Shi Wei-Hua, shiwh@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704200, 52001168), the Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY217130), the Postdoctoral Science Foundation of China (Grant No. 2022M710668), the Fundamental Research Funds for the Central Universities of China (Grant No. 2242020k30039), and the Open Research Fund of Key Laboratory of MEMS of Ministry of Education, Southeast University, China.
    [1]

    Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A 2010 Nat. Photonics 4 33Google Scholar

    [2]

    Whitworth G L, Dalmases M, Taghipour N, Konstantatos G 2021 Nat. Photonics 15 738Google Scholar

    [3]

    Cegielski P J, Giesecke A L, Neutzner S, Porschatis C, Gandini M, Schall D, Perini C A, Bolten J, Suckow S, Kataria S 2018 Nano Lett. 18 6915Google Scholar

    [4]

    Vollmer F, Arnold S 2008 Nat. Methods 5 591Google Scholar

    [5]

    Chen YC, Fan X 2019 Adv. Opt. Mater. 7 1900377Google Scholar

    [6]

    Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale A C, Eisler H J, Bawendi M 2000 Science 290 314Google Scholar

    [7]

    Ahn N, Livache C, Pinchetti V, Jung H, Jin H, Hahm D, Park Y S, Klimov V I 2023 Nature 617 79Google Scholar

    [8]

    Fan F, Voznyy O, Sabatini R P, Bicanic K T, Adachi M M, McBride J R, Reid K R, Park Y S, Li X, Jain A, Quintero-Bermudez R, Saravanapavanantham M, Liu M, Korkusinski M, Hawrylak P, Klimov V I, Rosenthal S J, Hoogland S, Sargent E H 2017 Nature 544 75Google Scholar

    [9]

    Dang C, Lee J, Breen C, Steckel J S, Coe-Sullivan S, Nurmikko A 2012 Nat. Nanotechnol. 7 335Google Scholar

    [10]

    Wang Y, Yu D, Wang Z, Li X, Chen X, Nalla V, Zeng H, Sun H 2017 Small 13 1701587Google Scholar

    [11]

    Ledentsov N, Ustinov V, Egorov A Y, Zhukov A, Maksimov M, Tabatadze I, Kop’ev P 1994 Semiconductors 28 832

    [12]

    Sukhovatkin V, Musikhin S, Gorelikov I, Cauchi S, Bakueva L, Kumacheva E, Sargent E H 2005 Opt. Lett. 30 171Google Scholar

    [13]

    Schaller R D, Petruska M A, Klimov V I 2003 J. Phys. Chem. B 107 13765Google Scholar

    [14]

    Klimov V I, Mikhailovsky A A, McBranch D, Leatherdale C A, Bawendi M G 2000 Science 287 1011Google Scholar

    [15]

    Wundke K, Auxier J, Schülzgen A, Peyghambarian N, Borrelli N 1999 Appl. Phys. Lett. 75 3060Google Scholar

    [16]

    Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q 2013 Chem. Mater. 25 2503Google Scholar

    [17]

    Zhu C N, Jiang P, Zhang Z L, Zhu D L, Tian Z Q, Pang D W 2013 ACS Appl. Mater. Interfaces 5 1186Google Scholar

    [18]

    Liao C, Tang L, Wang L, Li Y, Xu J, Jia Y 2020 Nanoscale 12 21879Google Scholar

    [19]

    Liao C, Tang L, Li Y, Sun S, Wang L, Xu J, Jia Y, Gu Z 2022 Nanoscale 14 10169Google Scholar

    [20]

    Chang H, Zhong Y, Dong H, Wang Z, Xie W, Pan A, Zhang L 2021 Light: Sci. Appl. 10 60Google Scholar

    [21]

    Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar

    [22]

    Yang H, Zhang L, Xiang W, Lu C, Cui Y, Zhang J 2022 Adv. Sci. 9 2200395Google Scholar

    [23]

    Duan R, Zhang Z, Xiao L, Zhao X, Thung Y T, Ding L, Liu Z, Yang J, Ta V D, Sun H 2022 Adv. Mater. 34 2270104Google Scholar

    [24]

    Wang Y, Leck K S, Ta D, Chen R, Nalla V, Gao Y, He T, Demir H, Sun H 2015 Adv. Mater. 27 169Google Scholar

    [25]

    Zhang L, Li H, Liao C, Yang H, Ruilin X, Jiang X, Xiao M, Lu C, Cui Y, Zhang J 2018 J. Phys. Chem. C 122 25059Google Scholar

    [26]

    Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z, He T, Ohl C D, Demir H V, Sun H 2017 Nano Lett. 17 2640Google Scholar

    [27]

    Wang G, Jiang X, Zhao M, Ma Y, Fan H, Yang Q, Tong L, Xiao M 2012 Opt. Express 20 29472Google Scholar

    [28]

    Min B, Kim S, Okamoto K, Yang L, Scherer A, Atwater H, Vahala K 2006 Appl. Phys. Lett. 89 191124Google Scholar

    [29]

    Di Stasio F, Grim J Q, Lesnyak V, Rastogi P, Manna L, Moreels I, Krahne R 2015 Small 11 1328Google Scholar

    [30]

    Zavelani-Rossi M, Krahne R, Della Valle G, Longhi S, Franchini I, Girardo S, Scotognella F, Pisignano D, Manna L, Lanzani G, Tassone F 2012 Laser Photonics Rev. 6 678Google Scholar

    [31]

    Xu Z, Zhai T, Shi X, Tong J, Wang X, Deng J 2021 ACS Appl. Mater. Interfaces 13 19324Google Scholar

    [32]

    Zhang C, Zou C L, Zhao Y, Dong C H, Wei C, Wang H, Liu Y, Guo G C, Yao J, Zhao Y S 2015 Sci. Adv. 1 e1500257Google Scholar

    [33]

    Wong W W, Su Z, Wang N, Jagadish C, Tan H H 2021 Nano Lett. 21 5681Google Scholar

    [34]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [35]

    张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋 2017 物理学报 66 066101Google Scholar

    Zhang Y J, Ye F X, Dai J, He B F, Zang D Y 2017 Acta Phys. Sin. 66 066101Google Scholar

    [36]

    Zavelani-Rossi M, Lupo M G, Krahne R, Manna L, Lanzani G 2010 Nanoscale 2 931Google Scholar

    [37]

    Ma J, Xiao L, Gu J, Li H, Cheng X, He G, Jiang X, Xiao M 2019 Photonics Res. 7 573Google Scholar

    [38]

    Park Y S, Roh J, Diroll B T, Schaller R D, Klimov V I 2021 Nat. Rev. Mater. 6 382Google Scholar

    [39]

    Ahn N, Livache C, Pinchetti V, Klimov V I 2023 Chem. Rev. 123 8251Google Scholar

    [40]

    Taghipour N, Dalmases M, Whitworth G L, Dosil M, Othonos A, Christodoulou S, Liga S M, Konstantatos G 2023 Adv. Mater. 35 2207678Google Scholar

    [41]

    Kozlov O V, Park Y S, Roh J, Fedin I, Nakotte T, Klimov V I 2019 Science 365 672Google Scholar

  • 图 1  (a) Ag2Se 量子点的TEM图和高分辨率TEM图(插图); (b) Ag2Se量子点在四氯乙烯中的吸收(Abs)光谱和荧光(PL)光谱; (c) Ag2Se 量子点咖啡环的光学显微镜图; (d)图(c)中咖啡环左上部分AFM图

    Fig. 1.  (a) TEM and high-resolution TEM (inset) images of Ag2Se QDs; (b) absorption and PL spectra of Ag2Se QDs in tetrachloroethylene; (c) optical microscope image of an Ag2Se quantum dots coffee-ring; (d) AFM image of the top-left part of the coffee-ring shown in panel (c).

    图 2  (a)净模式增益$ {g_{{\text{mod}}}} = 0 $时咖啡环微腔的光场分布图; (b)微腔的驻波场分布图; (c)腔长分别为9.2, 7.9和7.1 μm的咖啡环微腔的发射谱; (d)咖啡环微腔的FSR与腔长的关系(圆点), 实线是标准F-P腔的FSR

    Fig. 2.  (a) Optical field distribution of the coffee-ring microcavity with the net mode gain $ {g_{{\text{mod}}}} = 0 $; (b) standing wave field distribution in coffee-ring microcavity; (c) emission spectra with different cavity lengths of 9.2, 7.9 and 7.1 μm, respectively; (d) relationship between the FSR of the coffee-ring microcavity and the cavity length (dots). The solid line is the FSR of the standard F-P cavity

    图 3  (a) Ag2Se量子点的线性吸收谱(实线)以及考虑可变高斯型增益的吸收谱; (b)不同净模式增益的微腔发射谱; (c) $ {g_{{\text{mod, 1310 nm}}}} = $$ 650{\text{ c}}{{\text{m}}^{{{ - 1}}}} $的咖啡环微腔的光场分布图; (d)不同腔长的咖啡环微腔的归一化发射谱

    Fig. 3.  (a) Linear absorption spectrum of Ag2Se quantum dot (solid line) and absorption spectrum with variable Gaussian gain; (b) emission spectra of microcavity with different net mode gain; (c) light field distribution of the coffee-ring microcavity spectrum with $ {g_{{\text{mod, 1310 nm}}}} = 650{\text{ c}}{{\text{m}}^{{ { - 1}}}} $; (d) normalized emission spectra with different cavity lengths.

    图 4  (a)咖啡环微型激光器性能表征示意图; (b)腔长为9.2 μm的咖啡环微型激光器在激光阈值以上的发射谱; (c)腔长为7.9 μm的咖啡环微型激光器在不同光强泵浦下的发射谱. 插图: 激光峰处发射强度随泵浦光强的变化; (d)不同腔长的咖啡环微型激光器的归一化激光发射谱; (e)激光阈值(圆点)与峰值波长的关系; (f)咖啡环微型激光器的激光发射峰处的发射强度随激光脉冲数的变化

    Fig. 4.  (a) Sketch of coffee-ring microlaser performance characterization; (b) emission spectrum of a coffee-ring microlaser with a cavity length of 9.2 μm; (c) emission spectra of the cavity length of 7.9 μm coffee-ring microlaser with different pump fluence. The inset shows emission intensity versus pump fluence at the position of lasing peak; (d) normalized laser emission spectra of the coffee-ring microlaser with different cavity lengths; (e) lasing threshold (circles) versus peak wavelength; (f) emission intensity versus laser shots at position of laser peak observed for a coffee-ring microlaser.

  • [1]

    Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R, Leitenstorfer A 2010 Nat. Photonics 4 33Google Scholar

    [2]

    Whitworth G L, Dalmases M, Taghipour N, Konstantatos G 2021 Nat. Photonics 15 738Google Scholar

    [3]

    Cegielski P J, Giesecke A L, Neutzner S, Porschatis C, Gandini M, Schall D, Perini C A, Bolten J, Suckow S, Kataria S 2018 Nano Lett. 18 6915Google Scholar

    [4]

    Vollmer F, Arnold S 2008 Nat. Methods 5 591Google Scholar

    [5]

    Chen YC, Fan X 2019 Adv. Opt. Mater. 7 1900377Google Scholar

    [6]

    Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale A C, Eisler H J, Bawendi M 2000 Science 290 314Google Scholar

    [7]

    Ahn N, Livache C, Pinchetti V, Jung H, Jin H, Hahm D, Park Y S, Klimov V I 2023 Nature 617 79Google Scholar

    [8]

    Fan F, Voznyy O, Sabatini R P, Bicanic K T, Adachi M M, McBride J R, Reid K R, Park Y S, Li X, Jain A, Quintero-Bermudez R, Saravanapavanantham M, Liu M, Korkusinski M, Hawrylak P, Klimov V I, Rosenthal S J, Hoogland S, Sargent E H 2017 Nature 544 75Google Scholar

    [9]

    Dang C, Lee J, Breen C, Steckel J S, Coe-Sullivan S, Nurmikko A 2012 Nat. Nanotechnol. 7 335Google Scholar

    [10]

    Wang Y, Yu D, Wang Z, Li X, Chen X, Nalla V, Zeng H, Sun H 2017 Small 13 1701587Google Scholar

    [11]

    Ledentsov N, Ustinov V, Egorov A Y, Zhukov A, Maksimov M, Tabatadze I, Kop’ev P 1994 Semiconductors 28 832

    [12]

    Sukhovatkin V, Musikhin S, Gorelikov I, Cauchi S, Bakueva L, Kumacheva E, Sargent E H 2005 Opt. Lett. 30 171Google Scholar

    [13]

    Schaller R D, Petruska M A, Klimov V I 2003 J. Phys. Chem. B 107 13765Google Scholar

    [14]

    Klimov V I, Mikhailovsky A A, McBranch D, Leatherdale C A, Bawendi M G 2000 Science 287 1011Google Scholar

    [15]

    Wundke K, Auxier J, Schülzgen A, Peyghambarian N, Borrelli N 1999 Appl. Phys. Lett. 75 3060Google Scholar

    [16]

    Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q 2013 Chem. Mater. 25 2503Google Scholar

    [17]

    Zhu C N, Jiang P, Zhang Z L, Zhu D L, Tian Z Q, Pang D W 2013 ACS Appl. Mater. Interfaces 5 1186Google Scholar

    [18]

    Liao C, Tang L, Wang L, Li Y, Xu J, Jia Y 2020 Nanoscale 12 21879Google Scholar

    [19]

    Liao C, Tang L, Li Y, Sun S, Wang L, Xu J, Jia Y, Gu Z 2022 Nanoscale 14 10169Google Scholar

    [20]

    Chang H, Zhong Y, Dong H, Wang Z, Xie W, Pan A, Zhang L 2021 Light: Sci. Appl. 10 60Google Scholar

    [21]

    Kahl M, Thomay T, Kohnle V, Beha K, Merlein J, Hagner M, Halm A, Ziegler J, Nann T, Fedutik Y, Woggon U, Artemyev M, Pérez-Willard F, Leitenstorfer A, Bratschitsch R 2007 Nano Lett. 7 2897Google Scholar

    [22]

    Yang H, Zhang L, Xiang W, Lu C, Cui Y, Zhang J 2022 Adv. Sci. 9 2200395Google Scholar

    [23]

    Duan R, Zhang Z, Xiao L, Zhao X, Thung Y T, Ding L, Liu Z, Yang J, Ta V D, Sun H 2022 Adv. Mater. 34 2270104Google Scholar

    [24]

    Wang Y, Leck K S, Ta D, Chen R, Nalla V, Gao Y, He T, Demir H, Sun H 2015 Adv. Mater. 27 169Google Scholar

    [25]

    Zhang L, Li H, Liao C, Yang H, Ruilin X, Jiang X, Xiao M, Lu C, Cui Y, Zhang J 2018 J. Phys. Chem. C 122 25059Google Scholar

    [26]

    Wang Y, Ta V D, Leck K S, Tan B H I, Wang Z, He T, Ohl C D, Demir H V, Sun H 2017 Nano Lett. 17 2640Google Scholar

    [27]

    Wang G, Jiang X, Zhao M, Ma Y, Fan H, Yang Q, Tong L, Xiao M 2012 Opt. Express 20 29472Google Scholar

    [28]

    Min B, Kim S, Okamoto K, Yang L, Scherer A, Atwater H, Vahala K 2006 Appl. Phys. Lett. 89 191124Google Scholar

    [29]

    Di Stasio F, Grim J Q, Lesnyak V, Rastogi P, Manna L, Moreels I, Krahne R 2015 Small 11 1328Google Scholar

    [30]

    Zavelani-Rossi M, Krahne R, Della Valle G, Longhi S, Franchini I, Girardo S, Scotognella F, Pisignano D, Manna L, Lanzani G, Tassone F 2012 Laser Photonics Rev. 6 678Google Scholar

    [31]

    Xu Z, Zhai T, Shi X, Tong J, Wang X, Deng J 2021 ACS Appl. Mater. Interfaces 13 19324Google Scholar

    [32]

    Zhang C, Zou C L, Zhao Y, Dong C H, Wei C, Wang H, Liu Y, Guo G C, Yao J, Zhao Y S 2015 Sci. Adv. 1 e1500257Google Scholar

    [33]

    Wong W W, Su Z, Wang N, Jagadish C, Tan H H 2021 Nano Lett. 21 5681Google Scholar

    [34]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [35]

    张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋 2017 物理学报 66 066101Google Scholar

    Zhang Y J, Ye F X, Dai J, He B F, Zang D Y 2017 Acta Phys. Sin. 66 066101Google Scholar

    [36]

    Zavelani-Rossi M, Lupo M G, Krahne R, Manna L, Lanzani G 2010 Nanoscale 2 931Google Scholar

    [37]

    Ma J, Xiao L, Gu J, Li H, Cheng X, He G, Jiang X, Xiao M 2019 Photonics Res. 7 573Google Scholar

    [38]

    Park Y S, Roh J, Diroll B T, Schaller R D, Klimov V I 2021 Nat. Rev. Mater. 6 382Google Scholar

    [39]

    Ahn N, Livache C, Pinchetti V, Klimov V I 2023 Chem. Rev. 123 8251Google Scholar

    [40]

    Taghipour N, Dalmases M, Whitworth G L, Dosil M, Othonos A, Christodoulou S, Liga S M, Konstantatos G 2023 Adv. Mater. 35 2207678Google Scholar

    [41]

    Kozlov O V, Park Y S, Roh J, Fedin I, Nakotte T, Klimov V I 2019 Science 365 672Google Scholar

  • [1] 廖晨, 姚宁, 唐路平, 施伟华, 孙少凌, 杨浩然. 基于硒化银量子点的近红外自组装激光器. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231457
    [2] 孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬. 基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验. 物理学报, 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [3] 白鹏, 张月蘅, 沈文忠. 半导体上转换单光子探测技术研究进展. 物理学报, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [4] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [5] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究. 物理学报, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [6] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [7] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [8] 马红萍, 刘平, 杨清华, 邓德刚. Cr4+掺杂Li1.14Zn1.43SiO4透明微晶玻璃近红外宽带光谱特性. 物理学报, 2013, 62(17): 177801. doi: 10.7498/aps.62.177801
    [9] 刘江平, 毕鹏, 雷海乐, 黎军, 韦建军. 近三相点温度低温固体氘的红外吸收谱. 物理学报, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [10] 彭勇, 罗昔贤, 付姚, 邢明铭. 热分解含硫金属有机配合物制备近红外PbS量子点. 物理学报, 2013, 62(20): 208105. doi: 10.7498/aps.62.208105
    [11] 杨新荣, 徐波, 赵国晴, 申晓志, 史淑惠, 李洁, 王占国. InP基近红外波段量子线激光器的温度特性研究. 物理学报, 2012, 61(21): 216802. doi: 10.7498/aps.61.216802
    [12] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学. 物理学报, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [13] 杜凌霄, 胡炼, 张兵坡, 才玺坤, 楼腾刚, 吴惠桢. 微腔中CdSe量子点荧光增强效应. 物理学报, 2011, 60(11): 117803. doi: 10.7498/aps.60.117803
    [14] 柏江湘, 米贤武, 李德俊. 光学微盘腔与三能级量子点系统中的模耦合研究. 物理学报, 2010, 59(9): 6205-6212. doi: 10.7498/aps.59.6205
    [15] 陈定安, 沈 里, 张家雨, 崔一平. 胶体CdSe量子点的色度学特性研究. 物理学报, 2007, 56(11): 6340-6344. doi: 10.7498/aps.56.6340
    [16] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [17] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [18] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [19] 吴绍全, 何 忠, 阎从华, 谌雄文, 孙威立. 嵌入并联耦合双量子点介观环系统中的近藤效应. 物理学报, 2006, 55(3): 1413-1418. doi: 10.7498/aps.55.1413
    [20] 罗 莹, 王若桢, 马本堃. 半导体量子点的形状对受限激子的影响. 物理学报, 1999, 48(7): 1320-1326. doi: 10.7498/aps.48.1320
计量
  • 文章访问数:  2499
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-08
  • 修回日期:  2023-10-09
  • 上网日期:  2023-11-08
  • 刊出日期:  2023-11-20

/

返回文章
返回