-
常规卫星激光测距大多数采用532 nm波长激光, 但受激光能量和大气透过率低等瓶颈制约, 在微弱目标探测如碎片激光测距、月球激光测距中使用难度较大. 本文介绍了基于1.06 μm波长的激光测距技术, 分析了1.06 μm测距技术在激光能量、大气传输、背景噪声、单光子探测等方面相对于532 nm激光测距的优势, 分析了其应用于微弱目标激光测距的前景, 提出了针对1.06 μm激光测距系统的改造方案, 在上海天文台532 nm卫星激光测距系统的基础上, 完成了系统改造, 国内首次利用1.06 μm增强的InGaAs探测器实现对合作目标的高精度厘米级激光测距, 证明了1.06 μm波长激光测距技术在系统噪声和测量效率等方面的优势, 并且实现了该波长对1500 km空间碎片目标的高精度激光测距, 为未来远距离微弱目标高精度近红外波段激光测距提供了紧凑、低成本、易操作的测量技术方案.Classical satellite laser ranging (SLR) technology based on 532 nm wavelength usually adopts low energy laser to measure cooperative objects. However, for a very weak target, such as debris and lunar reflector arrays, laser ranging system should have much stronger detection capability than the laser ranging system for traditional application. A common way to improve system detection capability is to use high energy laser. With an additional frequency doubling crystal, it is more difficult to make a high energy laser based on 532 nm than that based on 1.06 μm, which restricts the improvement of system detection capability, and also gives rise to the short lifetime, poor system stability problems. Compared with 532 nm laser, the 1.06 μm laser has many advantages of high laser energy and power, high atmospheric transmissivity, and low background noise, thereby making it an ideal substitution for the traditional 532 nm SLR system. In this paper, we comparatively analyze the above-mentiond advantages of the 1.06 μm laser and other system’s key parameters such as detector efficiency and target reflection efficiency, calculate the echo photons one can obtain, and establish a 1.06 μm laser ranging system based on the existing 532 nm SLR at Shanghai Astronomical Observatory. Owing to the using of an InGaAs single photon detector, the system turns very compact, low cost, easy-to-be-installed and has almost no additional operation complexity than the 532 nm system. With this system, the high precision 1.06 μm laser ranging for cooperative objects based on InGaAs detector is carried out for the first time in China, and a ranging for space debris 1500 km away can also be realized. The ranging experiment shows with the same laser, SLR using 1.06 μm output reaches a detection efficiency of 7 times the detection efficiency the SLR using 532 nm output reaches, and the background noise only 1/5. This approves the advantages and feasibility of 1.06 μm system, and also shows its great potential application prospects in the high precision weak target laser detection in the day and night time. This paper provides a very easy operation, high compact and low cost method for the future high precision weak target laser ranging.
-
Keywords:
- satellite laser raging(SLR) /
- space debris detection /
- near infrared /
- single photon detection
[1] 扈荆夫 2003 博士学位论文 (上海: 中国科学院研究生院 (上海天文台))
Hu J F 2003 Ph. D. Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese)
[2] 秦显平 2003 硕士学位论文 (郑州: 中国人民解放军信息工程大学)
Qin X P 2003 M.S. Thesis (Zhengzhou: Information Engineering University) (in Chinese)
[3] 杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31 1161
Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 Chin. Sci. Bull. 31 1161
[4] 何妙福, Tapley B D, Eanes R J 1980 中国科学: 物理学 力学 天文学 25 636
He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636
[5] 丁剑, 瞿锋, 李谦, 程伯辉 2010 测绘科学 35 5
Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5
[6] 朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240
Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240
[7] Degnan J 2002 J. Geodyn. 34 551Google Scholar
[8] 刘静, 王荣兰, 张宏博, 肖佐 2004 空间科学学报 24 462Google Scholar
Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462Google Scholar
[9] 张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8
Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8
[10] 宋清丽, 梁智鹏, 董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175
Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt. & Precision Eng. 24 175
[11] 李祝莲, 张海涛, 李语强, 伏红林, 翟东升 2017 红外与激光工程 46 269
Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269
[12] Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18−22, 1992 p7
[13] Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90
[14] Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10−14, 2006 id.E86
[15] Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar
[16] Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14−17, 2010 p E42
[17] Degnan J J 1993 Contributions of Space Geodesy to Geodynamics: Technology 25 133
[18] Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/ 21c/pga_series_single_photon_counting_avalanche_photo- diode.pdf [2019-8-20]
[19] Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314
[20] Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar
[21] Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29−October 3, 2003 p1
[22] Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06
[23] 杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048
Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048
-
图 1 (a) 1.06 μm和532 nm单程大气透过率随不同仰角变化模型曲线; (b) 1.06 μm和532 nm单双程大气透过率比随不同仰角变化的比例曲线
Fig. 1. (a) The curve of one-way atmospheric transmissivity at 1.06 μm and 532 nm with different elevation angles; (b) the scale curve of one-way and two-way atmospheric transmissivity at 1.06 μm and 532 nm with different elevation angles.
表 1 2016年合作目标激光测距1.06 μm和532 nm波长测距结果和比对表
Table 1. The comparison table of cooperative target laser ranging at 1.06 μm and 532 nm.
圈次 仰角均值/(º) 轨道高度/km Point 测距精度/mm 回波率 噪声密度/个·s–1·m–1 1.06 μm 16072019.LES 37 1450 7641 20.5 18.64% 0.622 16072019. G1 48 35786 489 14.9 0.15% 0.498 16072020.G18 56 19140 9668 33.1 1.83% 0.680 16072020.G17 51 19140 715 31.7 0.22% 0.700 16072019. I7 51 35786 3325 18.9 1.44% 0.646 16072018.G02 65 19140 9798 23.6 5.10% 0.583 532 nm 17091802.LES 37 1450 1037 6.4 3.99% 6.574 17091715.G1 48 35786 1713 10.5 0.14% 8.114 17082218.G18 54 19140 4375 — 0.75% — 17082318.G17 51 19140 1323 13.8 2.32% 1.126 17072720.I5 51 35786 1302 12.3 0.30% 1.616 17072216.G02 65 19140 3026 11.7 0.37% 6.015 表 2 2019年合作目标导航卫星激光测距1.06 μm和532 nm波长测距结果和比对表
Table 2. The comparison table of navigation satellites laser ranging at 1.06 μm and 532 nm in 2019.
圈次 组别 仰角均值 轨道高度 点数 测量时长 测距精度 回波率 噪声密度 /(º) /km /min /mm /个·s–1·m–1 1901171707.G121 G121-1064-2 45 19, 140 1542 1.2 23.2 2.142% 0.523 G121-532-1 45 380 2.1 20.1 0.302% 3.36 1901171719.I5 I5-1064-B-1 53 35, 786 96 0.783 21.4 0.204% 0.65 I5-532-2 55 137 2.283 16 0.1% 3.24 1901171744.G1 G1-1064 49 35, 786 450 2 11.5 0.381% 0.51 G1-532 49 145 2.217 7.9 0.109% 3.15 三组数据分别为对俄罗斯Glonass-121卫星, 中国北斗IGSO-5卫星, 中国北斗GEO-1卫星的观测数据, 每组数据的第一行为利用1.06 μm波长的测距结果, 第二行为利用532 nm波长的测距结果. -
[1] 扈荆夫 2003 博士学位论文 (上海: 中国科学院研究生院 (上海天文台))
Hu J F 2003 Ph. D. Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) (in Chinese)
[2] 秦显平 2003 硕士学位论文 (郑州: 中国人民解放军信息工程大学)
Qin X P 2003 M.S. Thesis (Zhengzhou: Information Engineering University) (in Chinese)
[3] 杨福民, 谭德同, 肖炽焜, 李振宇, 陆文虎, 陈婉珍, 蔡世福, 陈富祥, 张忠平, 胡振琪 1986 科学通报 31 1161
Yang F M, Tan D T, Xiao Z K, Li Z Y, Lu W H, Chen W Z, Cai S F, Chen F X, Zhang Z P, Hu Z Q 1986 Chin. Sci. Bull. 31 1161
[4] 何妙福, Tapley B D, Eanes R J 1980 中国科学: 物理学 力学 天文学 25 636
He M F, Tapley B D, Eanes R J 1980 Scientia Sinica Physica, Mechanica & Astronomica 25 636
[5] 丁剑, 瞿锋, 李谦, 程伯辉 2010 测绘科学 35 5
Ding J, Qu F, Li Q, Cheng B H 2010 Science of Surveying & Mapping 35 5
[6] 朱新慧, 杨力, 孙付平, 王刃 2014 测绘学报 43 240
Zhu X H, Yang L, Sun F P, Wang R 2014 Acta Geod. Cartogr. Sin. 43 240
[7] Degnan J 2002 J. Geodyn. 34 551Google Scholar
[8] 刘静, 王荣兰, 张宏博, 肖佐 2004 空间科学学报 24 462Google Scholar
Liu J, Wang R L, Zhang H B, Xiao Z 2004 Chin. J. Space Sci. 24 462Google Scholar
[9] 张忠萍, 程志恩, 张海峰, 邓华荣, 江海 2017 红外与激光工程 46 8
Zhang Z P, Cheng Z E, Zhang H F, Deng R H, Jiang H 2017 Infrared Laser Eng. 46 8
[10] 宋清丽, 梁智鹏, 董雪, 韩兴伟, 范存波 2016 光学精密工程 24 175
Song Q L, Liang Z P, Dong X, Han X W, Fan C B 2016 Opt. & Precision Eng. 24 175
[11] 李祝莲, 张海涛, 李语强, 伏红林, 翟东升 2017 红外与激光工程 46 269
Li Z L, Zhang H T, Li Y Q, Fu H L, Zhai D S 2017 Infrared Laser Eng. 46 269
[12] Schreiber U, Haufe K H, Dassing R 1993 8th International Workshop on Laser Ranging Instrumentation Annapolis, MD USA, May 18−22, 1992 p7
[13] Courde C, Torre J M, Samain E, Martinot-Lagarde G, Aimar M, Albanese D, Exertier P, Feraudy D, Fienga A, Mariey H, Métris G, Viot H, Viswanathan V. Astron. Astrophys. 602 A90
[14] Smith C, Greene B 2006 The Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, September 10−14, 2006 id.E86
[15] Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar
[16] Shell J R 2010 Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, HI, USA, September 14−17, 2010 p E42
[17] Degnan J J 1993 Contributions of Space Geodesy to Geodynamics: Technology 25 133
[18] Princeton Lightwave Inc. https://sphotonics.ru/upload/iblock/ 21c/pga_series_single_photon_counting_avalanche_photo- diode.pdf [2019-8-20]
[19] Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. Chin. Phys. Mechanics & Astronomy 60 120314
[20] Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar
[21] Jorgensen K, Jarvis K S, Hamada K, Parr-Thumm T L, Africano J L, Stansbery E G 2003 Proc. of the 54th International Astronautical Congress Bremen, Germany, September 29−October 3, 2003 p1
[22] Victoria M, Domínguez C, Askins S, Antón I, Sala G 2012 Jpn. J. Appl. Phys. AM15D 10ND06
[23] 杨福民, 肖炽焜, 陈婉珍, 张忠萍, 谭德同, 龚向东, 陈菊平, 黄力, 章建华 1998 中国科学(A辑) 28(11) 1048
Yang F M, Xiao Z K, Chen W Z, Zhang Z P, Tan D T, Gong X D, Chen J P, Huang L, Zhang J H 1998 Sci. Chin. (Series A) 28(11) 1048
计量
- 文章访问数: 10149
- PDF下载量: 178
- 被引次数: 0