-
雪崩光电二极管单光子探测器是一种具有超高灵敏度的光电探测器件, 在远距离激光测距、激光成像和量子通信等领域有非常重要的应用. 然而, 由于雪崩光电二极管单光子探测器的雪崩点对工作温度高度敏感, 因此在外场环境下工作时容易出现增益波动, 继而导致单光子探测器输出信号的延时发生漂移, 严重降低了探测器的时间稳定性. 本文发展了一种稳定输出延时的方法, 采用嵌入式系统控制雪崩光电二极管, 使其处于恒定温度, 并实时补偿由环境温度引起的延时漂移, 实现了雪崩光电二极管单光子探测器的高时间稳定性探测. 实验中, 环境温度从16 ℃变化到36 ℃, 雪崩光电二极管的工作温度稳定在15 ℃, 经过延时补偿, 雪崩光电二极管单光子探测器输出延时漂移小于±1 ps, 时间稳定度达到0.15 ps@100 s. 这项工作有望为全天候野外条件和空间极端条件下的高精度单光子探测应用提供有效的解决方法.Avalanche photodiode single-photon detector is one of the ultra-sensitivity photoelectric detector, which has important applications in the fields of long-distance laser ranging, laser imaging, and quantum communication. However, due to the high temperature sensitivity of the avalanche voltage, the avalanche photodiode single-photon detector is prone to fluctuation of the avalanche gain when it works in the field environment, which leads to the delay drift and seriously reduces the time stability. In this paper, we proposed a method of stabilizing the delay of the single-photon detector. An embedded system was used to control avalanche photodiode at constant low temperature and compensate the delay drift of the detection circuit caused by the change of environment temperature in real time. A high time stability avalanche photodiode single-photon detector was realized by this method. In the experiment, the environment temperature changed from 16 ℃ to 36 ℃, and the avalanche photodiode was controlled at 15 ℃. After compensation, the delay drift of the avalanche photodiode single-photon detector was within ±1 ps, and the time deviation was 0.15 ps@100 s. This work is expected to provide an effective solution for the application of high-stability single-photon detector in the field and space environment.
-
Keywords:
- single-photon detection /
- avalanche photodiode /
- time deviation /
- delay drift
[1] Ren M, Gu X R, Liang Y, Kong W B, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497Google Scholar
[2] 张忠萍, 张海峰, 吴志波, 李朴, 孟文东, 陈菊平, 庞毓 2014 中国激光 41 s108005-1
Zhang Z P, Zhang H F, Wu Z B, Li P, Meng W D, Chen J P, Pang Y 2014 Chinese J.Lasers 41 s108005-1
[3] 孟文东, 汤凯, 邓华荣, 李朴, 张海峰, 吴志波, 张忠萍 2015 光学学报 35 s112006
Meng W D, Tang K, Deng H R, Li P, Zhang H F, Wu Z B, Zhang Z P 2015 Acta Opt.Sin. 35 s112006
[4] Zheng T X, Shen G Y, Li Z H, Yang L, Zhang H Y, Wu E, Wu G 2019 Photonics Res. 7 1381Google Scholar
[5] Du B C, Wang Y, Wu E, Chen X L, Wu G 2018 Opt. Commun. 426 89Google Scholar
[6] Li Z H, Wu E, Pang C K, Du B C, Tao Y L, Peng H, Zeng H P, Wu G 2017 Opt. Express 25 10189Google Scholar
[7] Meng W D, Zhang H F, Huang P C, Wang J, Zhang Z P, Liao Y, Ye Y, Hu W, Wang Y M, Chen W Z, Yang F M, Prochazka I 2013 Adv. Space Res. 49 80
[8] Warburton R E, McCarthy A, Wallace A M, Hernandez-Marin S, Buller G S 2007 Opt. Lett. 32 2266Google Scholar
[9] Hadfield R H 2009 Nat. Photonics 3 696Google Scholar
[10] Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express 19 19323Google Scholar
[11] Gariepy G, Tonolini F, Henderson R, Leach J, Faccio D 2016 Nat. Photonics 10 23Google Scholar
[12] 孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 物理学报 69 019502
Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Yang X Y 2020 Acta Phys. Sin. 69 019502
[13] 冯金垣, 陈红娟, 李丽秀, 龚雯 2006 光学技术 32 237Google Scholar
Feng J Y, Chen H J, Li L X, Gong W 2006 Opt. Techn. 32 237Google Scholar
[14] 亓少帅, 张天舒, 付毅宾, 王欢雪, 吕立慧 2016 量子电子学报 3 81
Qi S S, Zhang T S, Fu Y B, Wang H X, Lü L H 2016 Chinese J. Quantum Elect. 3 81
[15] ProchazkaI, Kodet J, Blazej J 2013 Rev. Sci. Instrum. 84 046107Google Scholar
[16] Prochazka I, Kodet J, Eckl J, Blazej J 2017 Rev. Sci. Instrum. 88 106105Google Scholar
[17] Prochazka I, Blazej J, Kodet J 2018 Rev. Sci. Instrum. 89 056106Google Scholar
[18] Paulus T J 1985 IEEE Trans.Nucl.Sci. 32 1242Google Scholar
[19] Hansang L 2014 IEEE Trans.Nucl.Sci. 61 2351Google Scholar
[20] Jhee Y, Campbell J, Ferguson J, Dentai A, Holden W 1986 IEEE J. QuantumElect. 22 753
-
-
[1] Ren M, Gu X R, Liang Y, Kong W B, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497Google Scholar
[2] 张忠萍, 张海峰, 吴志波, 李朴, 孟文东, 陈菊平, 庞毓 2014 中国激光 41 s108005-1
Zhang Z P, Zhang H F, Wu Z B, Li P, Meng W D, Chen J P, Pang Y 2014 Chinese J.Lasers 41 s108005-1
[3] 孟文东, 汤凯, 邓华荣, 李朴, 张海峰, 吴志波, 张忠萍 2015 光学学报 35 s112006
Meng W D, Tang K, Deng H R, Li P, Zhang H F, Wu Z B, Zhang Z P 2015 Acta Opt.Sin. 35 s112006
[4] Zheng T X, Shen G Y, Li Z H, Yang L, Zhang H Y, Wu E, Wu G 2019 Photonics Res. 7 1381Google Scholar
[5] Du B C, Wang Y, Wu E, Chen X L, Wu G 2018 Opt. Commun. 426 89Google Scholar
[6] Li Z H, Wu E, Pang C K, Du B C, Tao Y L, Peng H, Zeng H P, Wu G 2017 Opt. Express 25 10189Google Scholar
[7] Meng W D, Zhang H F, Huang P C, Wang J, Zhang Z P, Liao Y, Ye Y, Hu W, Wang Y M, Chen W Z, Yang F M, Prochazka I 2013 Adv. Space Res. 49 80
[8] Warburton R E, McCarthy A, Wallace A M, Hernandez-Marin S, Buller G S 2007 Opt. Lett. 32 2266Google Scholar
[9] Hadfield R H 2009 Nat. Photonics 3 696Google Scholar
[10] Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express 19 19323Google Scholar
[11] Gariepy G, Tonolini F, Henderson R, Leach J, Faccio D 2016 Nat. Photonics 10 23Google Scholar
[12] 孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 物理学报 69 019502
Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Yang X Y 2020 Acta Phys. Sin. 69 019502
[13] 冯金垣, 陈红娟, 李丽秀, 龚雯 2006 光学技术 32 237Google Scholar
Feng J Y, Chen H J, Li L X, Gong W 2006 Opt. Techn. 32 237Google Scholar
[14] 亓少帅, 张天舒, 付毅宾, 王欢雪, 吕立慧 2016 量子电子学报 3 81
Qi S S, Zhang T S, Fu Y B, Wang H X, Lü L H 2016 Chinese J. Quantum Elect. 3 81
[15] ProchazkaI, Kodet J, Blazej J 2013 Rev. Sci. Instrum. 84 046107Google Scholar
[16] Prochazka I, Kodet J, Eckl J, Blazej J 2017 Rev. Sci. Instrum. 88 106105Google Scholar
[17] Prochazka I, Blazej J, Kodet J 2018 Rev. Sci. Instrum. 89 056106Google Scholar
[18] Paulus T J 1985 IEEE Trans.Nucl.Sci. 32 1242Google Scholar
[19] Hansang L 2014 IEEE Trans.Nucl.Sci. 61 2351Google Scholar
[20] Jhee Y, Campbell J, Ferguson J, Dentai A, Holden W 1986 IEEE J. QuantumElect. 22 753
计量
- 文章访问数: 12847
- PDF下载量: 319
- 被引次数: 0